Algorithm-hardware Co-design of Attention Mechanism on FPGA Devices

计算机科学 现场可编程门阵列 核(代数) 稳健性(进化) 并行计算 矩形 嵌入式系统 计算机硬件 计算机工程 生物化学 化学 几何学 数学 组合数学 基因
作者
Xinyi Zhang,Yawen Wu,Peipei Zhou,Xulong Tang,Jingtong Hu
出处
期刊:ACM Transactions in Embedded Computing Systems [Association for Computing Machinery]
卷期号:20 (5s): 1-24 被引量:30
标识
DOI:10.1145/3477002
摘要

Multi-head self-attention (attention mechanism) has been employed in a variety of fields such as machine translation, language modeling, and image processing due to its superiority in feature extraction and sequential data analysis. This is benefited from a large number of parameters and sophisticated model architecture behind the attention mechanism. To efficiently deploy attention mechanism on resource-constrained devices, existing works propose to reduce the model size by building a customized smaller model or compressing a big standard model. A customized smaller model is usually optimized for the specific task and needs effort in model parameters exploration. Model compression reduces model size without hurting the model architecture robustness, which can be efficiently applied to different tasks. The compressed weights in the model are usually regularly shaped (e.g. rectangle) but the dimension sizes vary (e.g. differs in rectangle height and width). Such compressed attention mechanism can be efficiently deployed on CPU/GPU platforms as their memory and computing resources can be flexibly assigned with demand. However, for Field Programmable Gate Arrays (FPGAs), the data buffer allocation and computing kernel are fixed at run time to achieve maximum energy efficiency. After compression, weights are much smaller and different in size, which leads to inefficient utilization of FPGA on-chip buffer. Moreover, the different weight heights and widths may lead to inefficient FPGA computing kernel execution. Due to the large number of weights in the attention mechanism, building a unique buffer and computing kernel for each compressed weight on FPGA is not feasible. In this work, we jointly consider the compression impact on buffer allocation and the required computing kernel during the attention mechanism compressing. A novel structural pruning method with memory footprint awareness is proposed and the associated accelerator on FPGA is designed. The experimental results show that our work can compress Transformer (an attention mechanism based model) by 95x. The developed accelerator can fully utilize the FPGA resource, processing the sparse attention mechanism with the run-time throughput performance of 1.87 Tops in ZCU102 FPGA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助活力的妙菡采纳,获得10
2秒前
枫叶完成签到 ,获得积分10
3秒前
酷波er应助伊吹风子采纳,获得10
4秒前
莫言发布了新的文献求助10
4秒前
长尾巴的人类完成签到,获得积分10
5秒前
英俊的铭应助xxx采纳,获得10
6秒前
浅眠完成签到,获得积分10
6秒前
今天做实验了吗完成签到,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
彭于晏应助仁爱的大娘采纳,获得10
7秒前
10秒前
宁士萧发布了新的文献求助10
11秒前
科研通AI2S应助zwgao采纳,获得10
12秒前
13秒前
13秒前
伊吹风子发布了新的文献求助10
15秒前
17秒前
feedyoursoul发布了新的文献求助10
18秒前
不动僧完成签到,获得积分10
19秒前
19秒前
共享精神应助研友_Z6k7B8采纳,获得10
19秒前
fduqyy完成签到,获得积分10
20秒前
言亦云发布了新的文献求助10
20秒前
Qing完成签到,获得积分10
20秒前
科研通AI2S应助研友_8DWkVZ采纳,获得10
22秒前
宁士萧完成签到,获得积分10
22秒前
完美世界应助自然的致远采纳,获得10
23秒前
24秒前
25秒前
26秒前
直率夏烟发布了新的文献求助20
26秒前
27秒前
小熊不熊发布了新的文献求助10
28秒前
畅快芝麻完成签到,获得积分10
28秒前
29秒前
fuyg发布了新的文献求助10
30秒前
30秒前
wxy完成签到,获得积分10
32秒前
JamesPei应助heye采纳,获得10
33秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010512
求助须知:如何正确求助?哪些是违规求助? 3550312
关于积分的说明 11305427
捐赠科研通 3284689
什么是DOI,文献DOI怎么找? 1810836
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811499