亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Algorithm-hardware Co-design of Attention Mechanism on FPGA Devices

计算机科学 现场可编程门阵列 核(代数) 稳健性(进化) 并行计算 矩形 嵌入式系统 计算机硬件 计算机工程 生物化学 化学 几何学 数学 组合数学 基因
作者
Xinyi Zhang,Yawen Wu,Peipei Zhou,Xulong Tang,Jingtong Hu
出处
期刊:ACM Transactions in Embedded Computing Systems [Association for Computing Machinery]
卷期号:20 (5s): 1-24 被引量:30
标识
DOI:10.1145/3477002
摘要

Multi-head self-attention (attention mechanism) has been employed in a variety of fields such as machine translation, language modeling, and image processing due to its superiority in feature extraction and sequential data analysis. This is benefited from a large number of parameters and sophisticated model architecture behind the attention mechanism. To efficiently deploy attention mechanism on resource-constrained devices, existing works propose to reduce the model size by building a customized smaller model or compressing a big standard model. A customized smaller model is usually optimized for the specific task and needs effort in model parameters exploration. Model compression reduces model size without hurting the model architecture robustness, which can be efficiently applied to different tasks. The compressed weights in the model are usually regularly shaped (e.g. rectangle) but the dimension sizes vary (e.g. differs in rectangle height and width). Such compressed attention mechanism can be efficiently deployed on CPU/GPU platforms as their memory and computing resources can be flexibly assigned with demand. However, for Field Programmable Gate Arrays (FPGAs), the data buffer allocation and computing kernel are fixed at run time to achieve maximum energy efficiency. After compression, weights are much smaller and different in size, which leads to inefficient utilization of FPGA on-chip buffer. Moreover, the different weight heights and widths may lead to inefficient FPGA computing kernel execution. Due to the large number of weights in the attention mechanism, building a unique buffer and computing kernel for each compressed weight on FPGA is not feasible. In this work, we jointly consider the compression impact on buffer allocation and the required computing kernel during the attention mechanism compressing. A novel structural pruning method with memory footprint awareness is proposed and the associated accelerator on FPGA is designed. The experimental results show that our work can compress Transformer (an attention mechanism based model) by 95x. The developed accelerator can fully utilize the FPGA resource, processing the sparse attention mechanism with the run-time throughput performance of 1.87 Tops in ZCU102 FPGA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
14秒前
义气的含烟完成签到,获得积分10
30秒前
嘻嘻完成签到,获得积分10
2分钟前
Fairy完成签到,获得积分10
2分钟前
夏日香气完成签到 ,获得积分10
3分钟前
Ava应助pepper采纳,获得10
3分钟前
大模型应助科研通管家采纳,获得10
3分钟前
3分钟前
4分钟前
咯咯咯完成签到 ,获得积分10
5分钟前
5分钟前
飞快的孱发布了新的文献求助10
5分钟前
Jasper应助科研通管家采纳,获得10
5分钟前
pepper完成签到,获得积分20
6分钟前
6分钟前
飞快的孱发布了新的文献求助10
6分钟前
pepper发布了新的文献求助10
6分钟前
标致的泥猴桃完成签到,获得积分10
7分钟前
笨笨山芙完成签到 ,获得积分10
7分钟前
CH完成签到 ,获得积分10
7分钟前
李佳倩完成签到 ,获得积分10
7分钟前
阿狸完成签到 ,获得积分0
7分钟前
8分钟前
8分钟前
Koala04完成签到,获得积分10
8分钟前
8分钟前
cy0824完成签到 ,获得积分10
8分钟前
飞快的孱发布了新的文献求助10
8分钟前
9分钟前
jitianxing发布了新的文献求助10
9分钟前
9分钟前
10分钟前
科研通AI5应助jitianxing采纳,获得10
11分钟前
我是老大应助科研通管家采纳,获得10
11分钟前
forest完成签到,获得积分10
12分钟前
12分钟前
jitianxing发布了新的文献求助10
12分钟前
vbnn完成签到 ,获得积分10
12分钟前
冷傲半邪完成签到,获得积分10
13分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582490
求助须知:如何正确求助?哪些是违规求助? 4000216
关于积分的说明 12382261
捐赠科研通 3675224
什么是DOI,文献DOI怎么找? 2025756
邀请新用户注册赠送积分活动 1059394
科研通“疑难数据库(出版商)”最低求助积分说明 946082