Algorithm-hardware Co-design of Attention Mechanism on FPGA Devices

计算机科学 现场可编程门阵列 核(代数) 稳健性(进化) 并行计算 矩形 嵌入式系统 计算机硬件 计算机工程 生物化学 化学 几何学 数学 组合数学 基因
作者
Xinyi Zhang,Yawen Wu,Peipei Zhou,Xulong Tang,Jingtong Hu
出处
期刊:ACM Transactions in Embedded Computing Systems [Association for Computing Machinery]
卷期号:20 (5s): 1-24 被引量:30
标识
DOI:10.1145/3477002
摘要

Multi-head self-attention (attention mechanism) has been employed in a variety of fields such as machine translation, language modeling, and image processing due to its superiority in feature extraction and sequential data analysis. This is benefited from a large number of parameters and sophisticated model architecture behind the attention mechanism. To efficiently deploy attention mechanism on resource-constrained devices, existing works propose to reduce the model size by building a customized smaller model or compressing a big standard model. A customized smaller model is usually optimized for the specific task and needs effort in model parameters exploration. Model compression reduces model size without hurting the model architecture robustness, which can be efficiently applied to different tasks. The compressed weights in the model are usually regularly shaped (e.g. rectangle) but the dimension sizes vary (e.g. differs in rectangle height and width). Such compressed attention mechanism can be efficiently deployed on CPU/GPU platforms as their memory and computing resources can be flexibly assigned with demand. However, for Field Programmable Gate Arrays (FPGAs), the data buffer allocation and computing kernel are fixed at run time to achieve maximum energy efficiency. After compression, weights are much smaller and different in size, which leads to inefficient utilization of FPGA on-chip buffer. Moreover, the different weight heights and widths may lead to inefficient FPGA computing kernel execution. Due to the large number of weights in the attention mechanism, building a unique buffer and computing kernel for each compressed weight on FPGA is not feasible. In this work, we jointly consider the compression impact on buffer allocation and the required computing kernel during the attention mechanism compressing. A novel structural pruning method with memory footprint awareness is proposed and the associated accelerator on FPGA is designed. The experimental results show that our work can compress Transformer (an attention mechanism based model) by 95x. The developed accelerator can fully utilize the FPGA resource, processing the sparse attention mechanism with the run-time throughput performance of 1.87 Tops in ZCU102 FPGA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏末发布了新的文献求助10
刚刚
futing发布了新的文献求助10
刚刚
bzy完成签到,获得积分10
刚刚
Yxy完成签到,获得积分10
1秒前
不喝可乐完成签到,获得积分20
2秒前
小问号完成签到,获得积分10
2秒前
3秒前
柳七发布了新的文献求助10
3秒前
迟大猫应助111123123123采纳,获得10
3秒前
香蕉觅云应助子俞采纳,获得10
3秒前
玛卡巴卡完成签到,获得积分10
4秒前
Grayball应助科研小白采纳,获得10
4秒前
阳光完成签到,获得积分10
4秒前
duan完成签到,获得积分10
4秒前
7777777发布了新的文献求助10
4秒前
朴素篮球完成签到,获得积分10
5秒前
清辉月凝完成签到,获得积分10
6秒前
Barry完成签到,获得积分10
6秒前
枫叶完成签到 ,获得积分10
6秒前
英姑应助桶桶要好好学习采纳,获得10
6秒前
7秒前
不辞完成签到,获得积分10
7秒前
ry发布了新的文献求助10
7秒前
song完成签到,获得积分10
7秒前
明亮无颜完成签到,获得积分10
7秒前
8秒前
8秒前
小慈爱鸡完成签到 ,获得积分10
8秒前
8秒前
英俊的铭应助麻麻采纳,获得10
8秒前
97b1完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
羊羊羊发布了新的文献求助30
10秒前
11秒前
11秒前
再沉默完成签到,获得积分10
12秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678