亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development of Ultrasensitive Biomimetic Auditory Hair Cells Based on Piezoresistive Hydrogel Nanocomposites

材料科学 毛细胞 压阻效应 灵敏度(控制系统) 纳米复合材料 音频 声学 纳米技术 复合材料 触觉传感器 导电体 生物相容性材料 光电子学 声压 耳蜗 生物医学工程 计算机科学 电子工程 工程类 医学 物理 解剖 人工智能 机器人
作者
Hadi Ahmadi,Hamed Moradi,Christopher J. Pastras,S.A. Moshizi,Shuying Wu,Mohsen Asadnia
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (37): 44904-44915 被引量:26
标识
DOI:10.1021/acsami.1c12515
摘要

With an ageing population, hearing disorders are predicted to rise considerably in the following decades. Thus, developing a new class of artificial auditory system has been highlighted as one of the most exciting research topics for biomedical applications. Herein, a design of a biocompatible piezoresistive-based artificial hair cell sensor is presented consisting of a highly flexible and conductive polyvinyl alcohol (PVA) nanocomposite with vertical graphene nanosheets (VGNs). The bilayer hydrogel sensor demonstrates excellent performance to mimic biological hair cells, responding to acoustic stimuli in the audible range between 60 Hz to 20 kHz. The sensor output demonstrates stable mid-frequency regions (∼4-9 kHz), with the greatest sensitivity as high frequencies (∼13-20 kHz). This is somewhat akin to the mammalian auditory system, which has remarkable sensitivity and sharp tuning at high frequencies due to the "active process". This work validates the PVA/VGN sensor as a potential candidate to play a similar functional role to that of the cochlear hair cells, which also operate over a wide frequency domain in a viscous environment. Further characterizations of the sensor show that increasing the sound amplitude results in higher responses from the sensor while taking it to the depth drops the sensor outputs due to attenuation of sound in water. Meanwhile, the acoustic pressure distribution of sound waves is predicted through finite element analysis, whereby the numerical results are in perfect agreement with experimental data. This proof-of-concept work creates a platform for the future design of susceptible, flexible biomimetic sensors to closely mimic the biological cochlea.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
申腾达发布了新的文献求助10
11秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
Jasper应助科研通管家采纳,获得10
15秒前
华仔应助科研通管家采纳,获得10
15秒前
情怀应助Mercy采纳,获得10
15秒前
lzmcsp完成签到,获得积分10
21秒前
59秒前
1分钟前
啵子发布了新的文献求助10
1分钟前
KsL2177完成签到 ,获得积分10
1分钟前
bkagyin应助啵子采纳,获得10
1分钟前
科研通AI6.1应助charitial采纳,获得10
2分钟前
飞天大南瓜完成签到,获得积分10
2分钟前
merilynht完成签到,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
我是老大应助申腾达采纳,获得10
2分钟前
CipherSage应助1234采纳,获得10
2分钟前
2分钟前
Yxy2021完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
charitial发布了新的文献求助10
2分钟前
2分钟前
菜鸟学习完成签到 ,获得积分10
2分钟前
上官若男应助颜安采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
颜安发布了新的文献求助10
3分钟前
RylNG发布了新的文献求助10
3分钟前
Eusha完成签到,获得积分10
3分钟前
RylNG完成签到,获得积分10
3分钟前
charitial完成签到,获得积分10
3分钟前
3分钟前
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780317
求助须知:如何正确求助?哪些是违规求助? 5654644
关于积分的说明 15453043
捐赠科研通 4911039
什么是DOI,文献DOI怎么找? 2643222
邀请新用户注册赠送积分活动 1590873
关于科研通互助平台的介绍 1545379