Development of Ultrasensitive Biomimetic Auditory Hair Cells Based on Piezoresistive Hydrogel Nanocomposites

材料科学 毛细胞 压阻效应 灵敏度(控制系统) 纳米复合材料 音频 声学 纳米技术 复合材料 触觉传感器 导电体 生物相容性材料 光电子学 声压 耳蜗 生物医学工程 计算机科学 电子工程 工程类 医学 物理 解剖 人工智能 机器人
作者
Hadi Ahmadi,Hamed Moradi,Christopher J. Pastras,S.A. Moshizi,Shuying Wu,Mohsen Asadnia
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (37): 44904-44915 被引量:26
标识
DOI:10.1021/acsami.1c12515
摘要

With an ageing population, hearing disorders are predicted to rise considerably in the following decades. Thus, developing a new class of artificial auditory system has been highlighted as one of the most exciting research topics for biomedical applications. Herein, a design of a biocompatible piezoresistive-based artificial hair cell sensor is presented consisting of a highly flexible and conductive polyvinyl alcohol (PVA) nanocomposite with vertical graphene nanosheets (VGNs). The bilayer hydrogel sensor demonstrates excellent performance to mimic biological hair cells, responding to acoustic stimuli in the audible range between 60 Hz to 20 kHz. The sensor output demonstrates stable mid-frequency regions (∼4-9 kHz), with the greatest sensitivity as high frequencies (∼13-20 kHz). This is somewhat akin to the mammalian auditory system, which has remarkable sensitivity and sharp tuning at high frequencies due to the "active process". This work validates the PVA/VGN sensor as a potential candidate to play a similar functional role to that of the cochlear hair cells, which also operate over a wide frequency domain in a viscous environment. Further characterizations of the sensor show that increasing the sound amplitude results in higher responses from the sensor while taking it to the depth drops the sensor outputs due to attenuation of sound in water. Meanwhile, the acoustic pressure distribution of sound waves is predicted through finite element analysis, whereby the numerical results are in perfect agreement with experimental data. This proof-of-concept work creates a platform for the future design of susceptible, flexible biomimetic sensors to closely mimic the biological cochlea.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
馋馋完成签到,获得积分10
1秒前
1秒前
费费完成签到,获得积分10
2秒前
共享精神应助哒哒采纳,获得10
2秒前
3秒前
科研通AI2S应助冷艳的友瑶采纳,获得10
5秒前
5秒前
FashionBoy应助独特的自中采纳,获得10
5秒前
iuv完成签到,获得积分10
5秒前
5秒前
费费发布了新的文献求助10
5秒前
佩楠发布了新的文献求助10
6秒前
compass发布了新的文献求助10
7秒前
li完成签到,获得积分0
7秒前
SYUE发布了新的文献求助10
7秒前
拼搏的笑珊完成签到,获得积分10
8秒前
ShowMaker应助九月采纳,获得20
8秒前
科研小白完成签到,获得积分10
9秒前
Sun1c7发布了新的文献求助10
9秒前
机灵夏云完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
狂野的书芹完成签到,获得积分10
11秒前
11秒前
11秒前
冷艳的友瑶完成签到,获得积分10
12秒前
Mister_CHEN完成签到,获得积分10
12秒前
12秒前
洁净的天佑完成签到,获得积分10
13秒前
廿三发布了新的文献求助10
14秒前
14秒前
哒哒完成签到 ,获得积分20
15秒前
光亮夏兰完成签到,获得积分10
15秒前
compass完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
热心观众发布了新的文献求助10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143897
求助须知:如何正确求助?哪些是违规求助? 2795508
关于积分的说明 7815487
捐赠科研通 2451567
什么是DOI,文献DOI怎么找? 1304518
科研通“疑难数据库(出版商)”最低求助积分说明 627251
版权声明 601419