Joint Distribution Alignment via Adversarial Learning for Domain Adaptive Object Detection

计算机科学 人工智能 目标检测 领域(数学分析) 模式识别(心理学) 机器学习 特征(语言学) 分类 公制(单位) 条件概率分布 数学 数学分析 语言学 哲学 运营管理 统计 经济
作者
Bo Zhang,Tao Chen,Bin Wang,Ruoyao Li
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:24: 4102-4112 被引量:15
标识
DOI:10.1109/tmm.2021.3114550
摘要

Unsupervised domain adaptive object detection aims to adapt a well-trained detector from its original source domain with rich labeled data to a new target domain with unlabeled data. Recently, mainstream approaches perform this task through adversarial learning, yet still suffer from two limitations. First, they mainly align marginal distribution by unsupervised cross-domain feature matching, and ignore each feature's categorical and positional information that can be exploited for conditional alignment; Second, they treat all classes as equally important for transferring cross-domain knowledge and ignore that different classes usually have different transferability. In this article, we propose a joint adaptive detection framework (JADF) to address the above challenges. First, an end-to-end joint adversarial adaptation framework for object detection is proposed, which aligns both marginal and conditional distributions between domains without introducing any extra hyper-parameter. Next, to consider the transferability of each object class, a metric for class-wise transferability assessment is proposed, which is incorporated into the JADF objective for domain adaptation. Further, an extended study from unsupervised domain adaptation (UDA) to unsupervised few-shot domain adaptation (UFDA) is conducted, where only a few unlabeled training images are available in unlabeled target domain. Extensive experiments validate that JADF is effective in both the UDA and UFDA settings, achieving significant performance gains over existing state-of-the-art cross-domain detection methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Owen应助玖熙采纳,获得50
2秒前
背后的涵菱完成签到,获得积分10
2秒前
开心新儿完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
HUYUE发布了新的文献求助10
4秒前
烟花应助Abyxwz采纳,获得10
4秒前
彭于晏应助una采纳,获得10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
柏小霜发布了新的文献求助10
5秒前
5秒前
6秒前
12333发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
Sky关闭了Sky文献求助
8秒前
科研通AI6应助读书的时候采纳,获得10
8秒前
8秒前
刘腾发布了新的文献求助10
10秒前
Judy发布了新的文献求助10
10秒前
酷波er应助舒心的蜜蜂采纳,获得30
10秒前
binol完成签到,获得积分10
10秒前
11秒前
刘l完成签到,获得积分10
11秒前
11秒前
xiaoshuai发布了新的文献求助10
11秒前
梓mua发布了新的文献求助10
12秒前
boluo发布了新的文献求助10
12秒前
打工dog发布了新的文献求助10
13秒前
科研小白菜完成签到,获得积分10
13秒前
13秒前
15秒前
Lucas应助Judy采纳,获得10
15秒前
15秒前
Abyxwz完成签到,获得积分10
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694141
求助须知:如何正确求助?哪些是违规求助? 5095906
关于积分的说明 15212994
捐赠科研通 4850815
什么是DOI,文献DOI怎么找? 2602009
邀请新用户注册赠送积分活动 1553827
关于科研通互助平台的介绍 1511800