Joint Distribution Alignment via Adversarial Learning for Domain Adaptive Object Detection

计算机科学 人工智能 目标检测 领域(数学分析) 模式识别(心理学) 机器学习 特征(语言学) 分类 公制(单位) 条件概率分布 数学 统计 数学分析 哲学 语言学 经济 运营管理
作者
Bo Zhang,Tao Chen,Bin Wang,Ruoyao Li
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:24: 4102-4112 被引量:15
标识
DOI:10.1109/tmm.2021.3114550
摘要

Unsupervised domain adaptive object detection aims to adapt a well-trained detector from its original source domain with rich labeled data to a new target domain with unlabeled data. Recently, mainstream approaches perform this task through adversarial learning, yet still suffer from two limitations. First, they mainly align marginal distribution by unsupervised cross-domain feature matching, and ignore each feature's categorical and positional information that can be exploited for conditional alignment; Second, they treat all classes as equally important for transferring cross-domain knowledge and ignore that different classes usually have different transferability. In this article, we propose a joint adaptive detection framework (JADF) to address the above challenges. First, an end-to-end joint adversarial adaptation framework for object detection is proposed, which aligns both marginal and conditional distributions between domains without introducing any extra hyper-parameter. Next, to consider the transferability of each object class, a metric for class-wise transferability assessment is proposed, which is incorporated into the JADF objective for domain adaptation. Further, an extended study from unsupervised domain adaptation (UDA) to unsupervised few-shot domain adaptation (UFDA) is conducted, where only a few unlabeled training images are available in unlabeled target domain. Extensive experiments validate that JADF is effective in both the UDA and UFDA settings, achieving significant performance gains over existing state-of-the-art cross-domain detection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞飞完成签到,获得积分10
刚刚
刚刚
平淡幻枫发布了新的文献求助10
刚刚
NexusExplorer应助mcqm采纳,获得10
刚刚
无花果应助科研通管家采纳,获得10
1秒前
young应助科研通管家采纳,获得10
1秒前
Rondab应助科研通管家采纳,获得10
1秒前
Rondab应助科研通管家采纳,获得10
1秒前
快乐的小叮当完成签到,获得积分10
1秒前
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
愉快之槐应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
young应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
2秒前
田様应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
CAOHOU应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
科研通AI2S应助WQY采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
徐徐完成签到,获得积分10
2秒前
CyrusSo524应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得30
2秒前
1sunpf完成签到,获得积分10
2秒前
2秒前
无花果应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
wen完成签到,获得积分10
3秒前
luxkex完成签到,获得积分10
3秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016130
求助须知:如何正确求助?哪些是违规求助? 3556145
关于积分的说明 11320169
捐赠科研通 3289087
什么是DOI,文献DOI怎么找? 1812382
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812051