A Novel Multiple-View Adversarial Learning Network for Unsupervised Domain Adaptation Action Recognition

人工智能 计算机科学 判别式 机器学习 模式识别(心理学) 特征学习 特征提取 稳健性(进化) 水准点(测量) RGB颜色模型 光流 图像(数学) 地理 大地测量学 化学 基因 生物化学
作者
Zan Gao,Yibo Zhao,Hua Zhang,Da Chen,An-An Liu,Shengyong Chen
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (12): 13197-13211 被引量:6
标识
DOI:10.1109/tcyb.2021.3105637
摘要

Abstract-domain adaptation action recognition is a hot research topic in machine learning and some effective approaches have been proposed. However, samples in the target domain with label information are often required by these approaches. Moreover, domain-invariant discriminative feature learning, feature fusion, and classifier module learning have not been explored in an end-to-end framework. Thus, in this study, we propose a novel end-to-end multiple-view adversarial learning network (MAN) for unsupervised domain adaptation action recognition in which the fusion of RGB and optical-flow features, domain-invariant discrimination feature learning, and action recognition is conducted in a unified framework. Specifically, a robust spatiotemporal feature extraction network, including a spatial transform network and an adaptive intrachannel weight network, is proposed to improve the scale invariance and robustness of the method. Then, a self-attention mechanism fusion module is designed to adaptively fuse the RGB and optical-flow features. Moreover, a multiview adversarial learning loss is developed to obtain domain-invariant discriminative features. In addition, three benchmark datasets are constructed for unsupervised domain adaptation action recognition, for which all actions and samples are carefully collected from public action datasets, and their action categories are hierarchically augmented, which can guide how to extend existing action datasets. We conduct extensive experiments on four benchmark datasets, and the experimental results demonstrate that our proposed MAN can outperform several state-of-the-art unsupervised domain adaptation action recognition approaches. When the SDAI Action II-6 and SDAI Action II-11 datasets are used, MAN can achieve 3.7% ( H → U ) and 6.1% ( H → U ) improvements over the temporal attentive adversarial adaptation network (published in ICCV 2019) module, respectively. As an added contribution, the SDAI Action II-6, SDAI Action II-11, and SDAI Action II-16 datasets will be released to facilitate future research on domain adaptation action recognition.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zoey发布了新的文献求助10
1秒前
FFF发布了新的文献求助10
1秒前
包容雪巧发布了新的文献求助10
2秒前
czq完成签到,获得积分10
2秒前
2秒前
nnnnn完成签到,获得积分10
2秒前
樊熙坤发布了新的文献求助10
2秒前
3秒前
任性映秋发布了新的文献求助10
3秒前
CYQ发布了新的文献求助20
3秒前
3秒前
3秒前
4秒前
4秒前
5秒前
彭于晏应助syr采纳,获得10
5秒前
香蕉觅云应助syr采纳,获得10
5秒前
爱吃土豆的马铃薯完成签到,获得积分20
5秒前
stws完成签到,获得积分10
5秒前
Hello应助扶南采纳,获得10
5秒前
5秒前
Alger发布了新的文献求助10
6秒前
小谢发布了新的文献求助10
7秒前
7秒前
风都甜一点完成签到,获得积分10
7秒前
7秒前
8秒前
狗尾巴草发布了新的文献求助10
8秒前
buno发布了新的文献求助30
8秒前
8秒前
诗瑜发布了新的文献求助10
9秒前
Austin完成签到,获得积分10
9秒前
ding应助stitch采纳,获得10
10秒前
10秒前
Kiwi发布了新的文献求助10
10秒前
海洋发布了新的文献求助10
11秒前
11秒前
11秒前
Owen应助ssy采纳,获得10
11秒前
12秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588259
求助须知:如何正确求助?哪些是违规求助? 4671299
关于积分的说明 14786793
捐赠科研通 4624766
什么是DOI,文献DOI怎么找? 2531723
邀请新用户注册赠送积分活动 1500308
关于科研通互助平台的介绍 1468262