亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Novel Multiple-View Adversarial Learning Network for Unsupervised Domain Adaptation Action Recognition

人工智能 计算机科学 判别式 机器学习 模式识别(心理学) 特征学习 特征提取 稳健性(进化) 水准点(测量) RGB颜色模型 光流 图像(数学) 地理 大地测量学 化学 基因 生物化学
作者
Zan Gao,Yibo Zhao,Hua Zhang,Da Chen,An-An Liu,Shengyong Chen
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (12): 13197-13211 被引量:6
标识
DOI:10.1109/tcyb.2021.3105637
摘要

Abstract-domain adaptation action recognition is a hot research topic in machine learning and some effective approaches have been proposed. However, samples in the target domain with label information are often required by these approaches. Moreover, domain-invariant discriminative feature learning, feature fusion, and classifier module learning have not been explored in an end-to-end framework. Thus, in this study, we propose a novel end-to-end multiple-view adversarial learning network (MAN) for unsupervised domain adaptation action recognition in which the fusion of RGB and optical-flow features, domain-invariant discrimination feature learning, and action recognition is conducted in a unified framework. Specifically, a robust spatiotemporal feature extraction network, including a spatial transform network and an adaptive intrachannel weight network, is proposed to improve the scale invariance and robustness of the method. Then, a self-attention mechanism fusion module is designed to adaptively fuse the RGB and optical-flow features. Moreover, a multiview adversarial learning loss is developed to obtain domain-invariant discriminative features. In addition, three benchmark datasets are constructed for unsupervised domain adaptation action recognition, for which all actions and samples are carefully collected from public action datasets, and their action categories are hierarchically augmented, which can guide how to extend existing action datasets. We conduct extensive experiments on four benchmark datasets, and the experimental results demonstrate that our proposed MAN can outperform several state-of-the-art unsupervised domain adaptation action recognition approaches. When the SDAI Action II-6 and SDAI Action II-11 datasets are used, MAN can achieve 3.7% ( H → U ) and 6.1% ( H → U ) improvements over the temporal attentive adversarial adaptation network (published in ICCV 2019) module, respectively. As an added contribution, the SDAI Action II-6, SDAI Action II-11, and SDAI Action II-16 datasets will be released to facilitate future research on domain adaptation action recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HL完成签到,获得积分10
8秒前
8秒前
flyingpig应助wisdom采纳,获得10
20秒前
量子星尘发布了新的文献求助10
23秒前
53秒前
Sid完成签到,获得积分0
1分钟前
李li完成签到,获得积分20
1分钟前
论高等数学的无用性完成签到 ,获得积分10
1分钟前
搜集达人应助小梦采纳,获得10
1分钟前
李li发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
在水一方应助nsc采纳,获得10
2分钟前
2分钟前
judy007发布了新的文献求助10
2分钟前
2分钟前
nsc发布了新的文献求助10
2分钟前
2分钟前
2分钟前
JamesPei应助nsc采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
小梦发布了新的文献求助10
3分钟前
3分钟前
就叫希望吧完成签到 ,获得积分10
3分钟前
3分钟前
大气山柏发布了新的文献求助10
3分钟前
深情安青应助小梦采纳,获得10
3分钟前
3分钟前
大气山柏完成签到,获得积分10
3分钟前
nsc发布了新的文献求助10
3分钟前
脑洞疼应助Rabbit采纳,获得10
4分钟前
4分钟前
67完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957044
求助须知:如何正确求助?哪些是违规求助? 3503067
关于积分的说明 11111230
捐赠科研通 3234118
什么是DOI,文献DOI怎么找? 1787727
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264