Longitudinal clustering analysis and prediction of Parkinson’s disease progression using radiomics and hybrid machine learning

人工智能 聚类分析 计算机科学 机器学习 主成分分析 模式识别(心理学) 线性判别分析
作者
Mohammad R. Salmanpour,Mojtaba Shamsaei,Ghasem Hajianfar,Hamid Soltanian‐Zadeh,Arman Rahmim
出处
期刊:Quantitative imaging in medicine and surgery [AME Publishing Company]
卷期号:12 (2): 906-919 被引量:27
标识
DOI:10.21037/qims-21-425
摘要

We employed machine learning approaches to (I) determine distinct progression trajectories in Parkinson's disease (PD) (unsupervised clustering task), and (II) predict progression trajectories (supervised prediction task), from early (years 0 and 1) data, making use of clinical and imaging features.We studied PD-subjects derived from longitudinal datasets (years 0, 1, 2 & 4; Parkinson's Progressive Marker Initiative). We extracted and analyzed 981 features, including motor, non-motor, and radiomics features extracted for each region-of-interest (ROIs: left/right caudate and putamen) using our standardized standardized environment for radiomics analysis (SERA) radiomics software. Segmentation of ROIs on dopamine transposer - single photon emission computed tomography (DAT SPECT) images were performed via magnetic resonance images (MRI). After performing cross-sectional clustering on 885 subjects (original dataset) to identify disease subtypes, we identified optimal longitudinal trajectories using hybrid machine learning systems (HMLS), including principal component analysis (PCA) + K-Means algorithms (KMA) followed by Bayesian information criterion (BIC), Calinski-Harabatz criterion (CHC), and elbow criterion (EC). Subsequently, prediction of the identified trajectories from early year data was performed using multiple HMLSs including 16 Dimension Reduction Algorithms (DRA) and 10 classification algorithms.We identified 3 distinct progression trajectories. Hotelling's t squared test (HTST) showed that the identified trajectories were distinct. The trajectories included those with (I, II) disease escalation (2 trajectories, 27% and 38% of patients) and (III) stable disease (1 trajectory, 35% of patients). For trajectory prediction from early year data, HMLSs including the stochastic neighbor embedding algorithm (SNEA, as a DRA) as well as locally linear embedding algorithm (LLEA, as a DRA), linked with the new probabilistic neural network classifier (NPNNC, as a classifier), resulted in accuracies of 78.4% and 79.2% respectively, while other HMLSs such as SNEA + Lib_SVM (library for support vector machines) and t_SNE (t-distributed stochastic neighbor embedding) + NPNNC resulted in 76.5% and 76.1% respectively.This study moves beyond cross-sectional PD subtyping to clustering of longitudinal disease trajectories. We conclude that combining medical information with SPECT-based radiomics features, and optimal utilization of HMLSs, can identify distinct disease trajectories in PD patients, and enable effective prediction of disease trajectories from early year data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助仲天与采纳,获得10
2秒前
2秒前
4秒前
虚心的颜完成签到,获得积分20
4秒前
4秒前
4秒前
葳蕤发布了新的文献求助10
4秒前
yuxiaoye应助徐小铖采纳,获得10
5秒前
酷波er应助CC采纳,获得10
5秒前
5秒前
共享精神应助Capacition6采纳,获得10
5秒前
6秒前
丰富的乐儿完成签到,获得积分10
6秒前
研友_VZG7GZ应助一一采纳,获得10
7秒前
茉莉发布了新的文献求助10
7秒前
7秒前
7秒前
早早完成签到,获得积分10
8秒前
euruss发布了新的文献求助50
8秒前
jingjing-8995发布了新的文献求助10
8秒前
8秒前
8秒前
空山发布了新的文献求助10
8秒前
kei发布了新的文献求助10
8秒前
Swuliu发布了新的文献求助10
9秒前
renshiq完成签到,获得积分10
10秒前
10秒前
脑洞疼应助风中悟空采纳,获得30
11秒前
12秒前
12秒前
科研通AI6应助不渝采纳,获得10
12秒前
orthojiang完成签到,获得积分10
12秒前
Karr发布了新的文献求助200
13秒前
13秒前
小二郎应助syxz0628采纳,获得10
13秒前
14秒前
jingjing-8995完成签到,获得积分10
14秒前
15秒前
墩墩关注了科研通微信公众号
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5399809
求助须知:如何正确求助?哪些是违规求助? 4519252
关于积分的说明 14074229
捐赠科研通 4432023
什么是DOI,文献DOI怎么找? 2433408
邀请新用户注册赠送积分活动 1425754
关于科研通互助平台的介绍 1404500