Longitudinal clustering analysis and prediction of Parkinson’s disease progression using radiomics and hybrid machine learning

人工智能 聚类分析 计算机科学 机器学习 主成分分析 模式识别(心理学) 线性判别分析
作者
Mohammad R. Salmanpour,Mojtaba Shamsaei,Ghasem Hajianfar,Hamid Soltanian‐Zadeh,Arman Rahmim
出处
期刊:Quantitative imaging in medicine and surgery [AME Publishing Company]
卷期号:12 (2): 906-919 被引量:27
标识
DOI:10.21037/qims-21-425
摘要

We employed machine learning approaches to (I) determine distinct progression trajectories in Parkinson's disease (PD) (unsupervised clustering task), and (II) predict progression trajectories (supervised prediction task), from early (years 0 and 1) data, making use of clinical and imaging features.We studied PD-subjects derived from longitudinal datasets (years 0, 1, 2 & 4; Parkinson's Progressive Marker Initiative). We extracted and analyzed 981 features, including motor, non-motor, and radiomics features extracted for each region-of-interest (ROIs: left/right caudate and putamen) using our standardized standardized environment for radiomics analysis (SERA) radiomics software. Segmentation of ROIs on dopamine transposer - single photon emission computed tomography (DAT SPECT) images were performed via magnetic resonance images (MRI). After performing cross-sectional clustering on 885 subjects (original dataset) to identify disease subtypes, we identified optimal longitudinal trajectories using hybrid machine learning systems (HMLS), including principal component analysis (PCA) + K-Means algorithms (KMA) followed by Bayesian information criterion (BIC), Calinski-Harabatz criterion (CHC), and elbow criterion (EC). Subsequently, prediction of the identified trajectories from early year data was performed using multiple HMLSs including 16 Dimension Reduction Algorithms (DRA) and 10 classification algorithms.We identified 3 distinct progression trajectories. Hotelling's t squared test (HTST) showed that the identified trajectories were distinct. The trajectories included those with (I, II) disease escalation (2 trajectories, 27% and 38% of patients) and (III) stable disease (1 trajectory, 35% of patients). For trajectory prediction from early year data, HMLSs including the stochastic neighbor embedding algorithm (SNEA, as a DRA) as well as locally linear embedding algorithm (LLEA, as a DRA), linked with the new probabilistic neural network classifier (NPNNC, as a classifier), resulted in accuracies of 78.4% and 79.2% respectively, while other HMLSs such as SNEA + Lib_SVM (library for support vector machines) and t_SNE (t-distributed stochastic neighbor embedding) + NPNNC resulted in 76.5% and 76.1% respectively.This study moves beyond cross-sectional PD subtyping to clustering of longitudinal disease trajectories. We conclude that combining medical information with SPECT-based radiomics features, and optimal utilization of HMLSs, can identify distinct disease trajectories in PD patients, and enable effective prediction of disease trajectories from early year data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiong发布了新的文献求助10
刚刚
1秒前
1秒前
烟花应助许杰亮采纳,获得30
2秒前
2秒前
肖肖完成签到,获得积分10
3秒前
无情科研狗完成签到,获得积分10
3秒前
3秒前
maoaq完成签到 ,获得积分10
4秒前
4秒前
4秒前
Z6745完成签到,获得积分10
4秒前
5秒前
欢呼盛夏完成签到,获得积分10
5秒前
5秒前
畅快盼望发布了新的文献求助10
5秒前
好好发布了新的文献求助10
5秒前
5秒前
pierolahm发布了新的文献求助20
5秒前
茶茶完成签到,获得积分10
5秒前
弱水举报莉莉斯求助涉嫌违规
5秒前
细腻的若山关注了科研通微信公众号
6秒前
无花果应助哈哈采纳,获得10
6秒前
6秒前
polysaccharide完成签到,获得积分10
6秒前
七七发布了新的文献求助10
6秒前
7秒前
7秒前
何永森发布了新的文献求助10
8秒前
LL发布了新的文献求助30
8秒前
8秒前
8秒前
8秒前
9秒前
10秒前
10秒前
10秒前
科研通AI6应助呼呼呼采纳,获得10
10秒前
泉竹晓筱发布了新的文献求助10
11秒前
谨慎妙菡完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5262045
求助须知:如何正确求助?哪些是违规求助? 4423178
关于积分的说明 13768730
捐赠科研通 4297627
什么是DOI,文献DOI怎么找? 2358073
邀请新用户注册赠送积分活动 1354468
关于科研通互助平台的介绍 1315580