Longitudinal clustering analysis and prediction of Parkinson’s disease progression using radiomics and hybrid machine learning

人工智能 聚类分析 计算机科学 机器学习 主成分分析 模式识别(心理学) 线性判别分析
作者
Mohammad R. Salmanpour,Mojtaba Shamsaei,Ghasem Hajianfar,Hamid Soltanian‐Zadeh,Arman Rahmim
出处
期刊:Quantitative imaging in medicine and surgery [AME Publishing Company]
卷期号:12 (2): 906-919 被引量:27
标识
DOI:10.21037/qims-21-425
摘要

We employed machine learning approaches to (I) determine distinct progression trajectories in Parkinson's disease (PD) (unsupervised clustering task), and (II) predict progression trajectories (supervised prediction task), from early (years 0 and 1) data, making use of clinical and imaging features.We studied PD-subjects derived from longitudinal datasets (years 0, 1, 2 & 4; Parkinson's Progressive Marker Initiative). We extracted and analyzed 981 features, including motor, non-motor, and radiomics features extracted for each region-of-interest (ROIs: left/right caudate and putamen) using our standardized standardized environment for radiomics analysis (SERA) radiomics software. Segmentation of ROIs on dopamine transposer - single photon emission computed tomography (DAT SPECT) images were performed via magnetic resonance images (MRI). After performing cross-sectional clustering on 885 subjects (original dataset) to identify disease subtypes, we identified optimal longitudinal trajectories using hybrid machine learning systems (HMLS), including principal component analysis (PCA) + K-Means algorithms (KMA) followed by Bayesian information criterion (BIC), Calinski-Harabatz criterion (CHC), and elbow criterion (EC). Subsequently, prediction of the identified trajectories from early year data was performed using multiple HMLSs including 16 Dimension Reduction Algorithms (DRA) and 10 classification algorithms.We identified 3 distinct progression trajectories. Hotelling's t squared test (HTST) showed that the identified trajectories were distinct. The trajectories included those with (I, II) disease escalation (2 trajectories, 27% and 38% of patients) and (III) stable disease (1 trajectory, 35% of patients). For trajectory prediction from early year data, HMLSs including the stochastic neighbor embedding algorithm (SNEA, as a DRA) as well as locally linear embedding algorithm (LLEA, as a DRA), linked with the new probabilistic neural network classifier (NPNNC, as a classifier), resulted in accuracies of 78.4% and 79.2% respectively, while other HMLSs such as SNEA + Lib_SVM (library for support vector machines) and t_SNE (t-distributed stochastic neighbor embedding) + NPNNC resulted in 76.5% and 76.1% respectively.This study moves beyond cross-sectional PD subtyping to clustering of longitudinal disease trajectories. We conclude that combining medical information with SPECT-based radiomics features, and optimal utilization of HMLSs, can identify distinct disease trajectories in PD patients, and enable effective prediction of disease trajectories from early year data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
做饭不咸完成签到,获得积分10
1秒前
无极微光应助木光采纳,获得20
1秒前
2秒前
www发布了新的文献求助10
2秒前
万能图书馆应助yanwowo采纳,获得10
2秒前
黄嘉慧完成签到 ,获得积分10
3秒前
想发一篇贾克斯完成签到,获得积分10
3秒前
4秒前
F_ken发布了新的文献求助10
4秒前
块块的加隆满口袋完成签到 ,获得积分10
5秒前
CT民工发布了新的文献求助10
5秒前
受伤冰菱完成签到,获得积分10
6秒前
lingyu完成签到,获得积分10
6秒前
7秒前
南絮发布了新的文献求助10
7秒前
ccc完成签到,获得积分10
7秒前
7秒前
7秒前
武工队队长石青山完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
卷儿w发布了新的文献求助40
10秒前
陆程文发布了新的文献求助10
10秒前
MXG完成签到,获得积分10
10秒前
隐形曼青应助ornot君君采纳,获得10
11秒前
zhulinkin完成签到 ,获得积分10
11秒前
睡醒了发布了新的文献求助10
12秒前
米鼓完成签到 ,获得积分10
13秒前
13秒前
科研发布了新的文献求助30
13秒前
青年才俊发布了新的文献求助30
14秒前
清脆的乌冬面完成签到,获得积分10
14秒前
14秒前
大模型应助芝麻球ii采纳,获得10
14秒前
WANG完成签到 ,获得积分10
14秒前
15秒前
myf完成签到,获得积分20
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097313
求助须知:如何正确求助?哪些是违规求助? 4309783
关于积分的说明 13428428
捐赠科研通 4137300
什么是DOI,文献DOI怎么找? 2266533
邀请新用户注册赠送积分活动 1269654
关于科研通互助平台的介绍 1205978