Longitudinal clustering analysis and prediction of Parkinson’s disease progression using radiomics and hybrid machine learning

人工智能 聚类分析 计算机科学 机器学习 主成分分析 模式识别(心理学) 线性判别分析
作者
Mohammad R. Salmanpour,Mojtaba Shamsaei,Ghasem Hajianfar,Hamid Soltanian‐Zadeh,Arman Rahmim
出处
期刊:Quantitative imaging in medicine and surgery [AME Publishing Company]
卷期号:12 (2): 906-919 被引量:27
标识
DOI:10.21037/qims-21-425
摘要

We employed machine learning approaches to (I) determine distinct progression trajectories in Parkinson's disease (PD) (unsupervised clustering task), and (II) predict progression trajectories (supervised prediction task), from early (years 0 and 1) data, making use of clinical and imaging features.We studied PD-subjects derived from longitudinal datasets (years 0, 1, 2 & 4; Parkinson's Progressive Marker Initiative). We extracted and analyzed 981 features, including motor, non-motor, and radiomics features extracted for each region-of-interest (ROIs: left/right caudate and putamen) using our standardized standardized environment for radiomics analysis (SERA) radiomics software. Segmentation of ROIs on dopamine transposer - single photon emission computed tomography (DAT SPECT) images were performed via magnetic resonance images (MRI). After performing cross-sectional clustering on 885 subjects (original dataset) to identify disease subtypes, we identified optimal longitudinal trajectories using hybrid machine learning systems (HMLS), including principal component analysis (PCA) + K-Means algorithms (KMA) followed by Bayesian information criterion (BIC), Calinski-Harabatz criterion (CHC), and elbow criterion (EC). Subsequently, prediction of the identified trajectories from early year data was performed using multiple HMLSs including 16 Dimension Reduction Algorithms (DRA) and 10 classification algorithms.We identified 3 distinct progression trajectories. Hotelling's t squared test (HTST) showed that the identified trajectories were distinct. The trajectories included those with (I, II) disease escalation (2 trajectories, 27% and 38% of patients) and (III) stable disease (1 trajectory, 35% of patients). For trajectory prediction from early year data, HMLSs including the stochastic neighbor embedding algorithm (SNEA, as a DRA) as well as locally linear embedding algorithm (LLEA, as a DRA), linked with the new probabilistic neural network classifier (NPNNC, as a classifier), resulted in accuracies of 78.4% and 79.2% respectively, while other HMLSs such as SNEA + Lib_SVM (library for support vector machines) and t_SNE (t-distributed stochastic neighbor embedding) + NPNNC resulted in 76.5% and 76.1% respectively.This study moves beyond cross-sectional PD subtyping to clustering of longitudinal disease trajectories. We conclude that combining medical information with SPECT-based radiomics features, and optimal utilization of HMLSs, can identify distinct disease trajectories in PD patients, and enable effective prediction of disease trajectories from early year data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
2秒前
wang发布了新的文献求助10
3秒前
seeya发布了新的文献求助10
4秒前
科研通AI6应助kk采纳,获得10
4秒前
呆萌的可乐关注了科研通微信公众号
6秒前
天天快乐应助wwho_O采纳,获得10
8秒前
核桃发布了新的文献求助10
8秒前
13秒前
14秒前
bmhs2017应助明芬采纳,获得10
14秒前
大模型应助phy采纳,获得10
14秒前
柏林寒冬应助波因斯坦采纳,获得10
15秒前
15秒前
####发布了新的文献求助20
15秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
拼搏向上发布了新的文献求助10
17秒前
852应助Fine采纳,获得10
17秒前
17秒前
19秒前
伏伏雅逸发布了新的文献求助10
20秒前
21秒前
思源应助zhangjian采纳,获得10
21秒前
小马甲应助ykr采纳,获得10
22秒前
同频共振完成签到,获得积分10
24秒前
26秒前
26秒前
研友_VZG7GZ应助peng采纳,获得10
26秒前
27秒前
orixero应助念你惊鸿影采纳,获得10
27秒前
量子星尘发布了新的文献求助10
27秒前
27秒前
28秒前
30秒前
30秒前
同频共振发布了新的文献求助10
30秒前
30秒前
Fine发布了新的文献求助10
30秒前
YYY完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5417068
求助须知:如何正确求助?哪些是违规求助? 4533127
关于积分的说明 14138228
捐赠科研通 4449179
什么是DOI,文献DOI怎么找? 2440630
邀请新用户注册赠送积分活动 1432456
关于科研通互助平台的介绍 1409858