Longitudinal clustering analysis and prediction of Parkinson’s disease progression using radiomics and hybrid machine learning

人工智能 聚类分析 计算机科学 机器学习 主成分分析 模式识别(心理学) 线性判别分析
作者
Mohammad R. Salmanpour,Mojtaba Shamsaei,Ghasem Hajianfar,Hamid Soltanian‐Zadeh,Arman Rahmim
出处
期刊:Quantitative imaging in medicine and surgery [AME Publishing Company]
卷期号:12 (2): 906-919 被引量:27
标识
DOI:10.21037/qims-21-425
摘要

We employed machine learning approaches to (I) determine distinct progression trajectories in Parkinson's disease (PD) (unsupervised clustering task), and (II) predict progression trajectories (supervised prediction task), from early (years 0 and 1) data, making use of clinical and imaging features.We studied PD-subjects derived from longitudinal datasets (years 0, 1, 2 & 4; Parkinson's Progressive Marker Initiative). We extracted and analyzed 981 features, including motor, non-motor, and radiomics features extracted for each region-of-interest (ROIs: left/right caudate and putamen) using our standardized standardized environment for radiomics analysis (SERA) radiomics software. Segmentation of ROIs on dopamine transposer - single photon emission computed tomography (DAT SPECT) images were performed via magnetic resonance images (MRI). After performing cross-sectional clustering on 885 subjects (original dataset) to identify disease subtypes, we identified optimal longitudinal trajectories using hybrid machine learning systems (HMLS), including principal component analysis (PCA) + K-Means algorithms (KMA) followed by Bayesian information criterion (BIC), Calinski-Harabatz criterion (CHC), and elbow criterion (EC). Subsequently, prediction of the identified trajectories from early year data was performed using multiple HMLSs including 16 Dimension Reduction Algorithms (DRA) and 10 classification algorithms.We identified 3 distinct progression trajectories. Hotelling's t squared test (HTST) showed that the identified trajectories were distinct. The trajectories included those with (I, II) disease escalation (2 trajectories, 27% and 38% of patients) and (III) stable disease (1 trajectory, 35% of patients). For trajectory prediction from early year data, HMLSs including the stochastic neighbor embedding algorithm (SNEA, as a DRA) as well as locally linear embedding algorithm (LLEA, as a DRA), linked with the new probabilistic neural network classifier (NPNNC, as a classifier), resulted in accuracies of 78.4% and 79.2% respectively, while other HMLSs such as SNEA + Lib_SVM (library for support vector machines) and t_SNE (t-distributed stochastic neighbor embedding) + NPNNC resulted in 76.5% and 76.1% respectively.This study moves beyond cross-sectional PD subtyping to clustering of longitudinal disease trajectories. We conclude that combining medical information with SPECT-based radiomics features, and optimal utilization of HMLSs, can identify distinct disease trajectories in PD patients, and enable effective prediction of disease trajectories from early year data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
excellent发布了新的文献求助10
刚刚
马洛发布了新的文献求助10
1秒前
小新完成签到,获得积分20
1秒前
高挑的寒松完成签到 ,获得积分10
2秒前
2秒前
木质素爱好者完成签到,获得积分10
3秒前
lojack完成签到,获得积分10
3秒前
panqi77完成签到,获得积分10
4秒前
4秒前
努力完成签到,获得积分10
4秒前
ys完成签到,获得积分10
4秒前
爆米花应助科研通管家采纳,获得30
5秒前
李爱国应助科研通管家采纳,获得30
5秒前
woollen2022完成签到,获得积分10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
Soin应助科研通管家采纳,获得10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
xiaogui应助科研通管家采纳,获得30
5秒前
慕青应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
JamesPei应助biozj采纳,获得10
6秒前
明明完成签到,获得积分20
6秒前
6秒前
酷波er应助勤恳鸿涛采纳,获得10
6秒前
7秒前
阿楷完成签到,获得积分10
8秒前
9秒前
ZZ发布了新的文献求助10
9秒前
小马甲应助大白采纳,获得10
10秒前
任元元完成签到 ,获得积分10
10秒前
excellent完成签到 ,获得积分20
10秒前
zlzhang完成签到 ,获得积分10
11秒前
趣多多发布了新的文献求助10
11秒前
mineave完成签到 ,获得积分10
12秒前
ljh完成签到 ,获得积分10
13秒前
13秒前
上官若男应助ellieou采纳,获得10
14秒前
Zoe发布了新的文献求助10
14秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159611
求助须知:如何正确求助?哪些是违规求助? 2810617
关于积分的说明 7888779
捐赠科研通 2469621
什么是DOI,文献DOI怎么找? 1314994
科研通“疑难数据库(出版商)”最低求助积分说明 630722
版权声明 602012