Genome sequencing data analysis for rare disease gene discovery

优先次序 工作流程 基因组 计算生物学 生物 数据科学 人口 疾病 注释 基因组学 精密医学 基因 遗传学 计算机科学 医学 人工智能 管理科学 经济 病理 环境卫生 数据库
作者
Umm-Kulthum Ismail Umlai,Dhinoth Kumar Bangarusamy,Xavier Estivill,Puthen V. Jithesh
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1) 被引量:6
标识
DOI:10.1093/bib/bbab363
摘要

Rare diseases occur in a smaller proportion of the general population, which is variedly defined as less than 200 000 individuals (US) or in less than 1 in 2000 individuals (Europe). Although rare, they collectively make up to approximately 7000 different disorders, with majority having a genetic origin, and affect roughly 300 million people globally. Most of the patients and their families undergo a long and frustrating diagnostic odyssey. However, advances in the field of genomics have started to facilitate the process of diagnosis, though it is hindered by the difficulty in genome data analysis and interpretation. A major impediment in diagnosis is in the understanding of the diverse approaches, tools and datasets available for variant prioritization, the most important step in the analysis of millions of variants to select a few potential variants. Here we present a review of the latest methodological developments and spectrum of tools available for rare disease genetic variant discovery and recommend appropriate data interpretation methods for variant prioritization. We have categorized the resources based on various steps of the variant interpretation workflow, starting from data processing, variant calling, annotation, filtration and finally prioritization, with a special emphasis on the last two steps. The methods discussed here pertain to elucidating the genetic basis of disease in individual patient cases via trio- or family-based analysis of the genome data. We advocate the use of a combination of tools and datasets and to follow multiple iterative approaches to elucidate the potential causative variant.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MoLing发布了新的文献求助10
刚刚
1秒前
Owen应助大气小土豆采纳,获得10
1秒前
2秒前
2秒前
香蕉觅云应助GKING采纳,获得10
2秒前
2秒前
3秒前
4秒前
上官若男应助愿景采纳,获得10
4秒前
七月流火给dawnfrf的求助进行了留言
5秒前
达分歧完成签到,获得积分10
5秒前
木可完成签到 ,获得积分10
5秒前
情怀应助王羲之采纳,获得10
5秒前
愉快若剑发布了新的文献求助150
6秒前
6秒前
YUMI发布了新的文献求助10
7秒前
7秒前
杨鑫怡发布了新的文献求助10
7秒前
8秒前
8秒前
扬帆远航完成签到 ,获得积分10
9秒前
深情安青应助闪闪万言采纳,获得10
10秒前
123发布了新的文献求助10
10秒前
一一应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
三岁应助科研通管家采纳,获得10
10秒前
一一应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得50
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
11秒前
所所应助科研通管家采纳,获得10
11秒前
CipherSage应助科研通管家采纳,获得20
11秒前
mengyao应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633272
求助须知:如何正确求助?哪些是违规求助? 4728777
关于积分的说明 14985477
捐赠科研通 4791228
什么是DOI,文献DOI怎么找? 2558809
邀请新用户注册赠送积分活动 1519258
关于科研通互助平台的介绍 1479548