Genome sequencing data analysis for rare disease gene discovery

优先次序 工作流程 基因组 计算生物学 生物 数据科学 人口 疾病 注释 基因组学 精密医学 基因 遗传学 计算机科学 医学 人工智能 管理科学 经济 病理 环境卫生 数据库
作者
Umm-Kulthum Ismail Umlai,Dhinoth Kumar Bangarusamy,Xavier Estivill,Puthen V. Jithesh
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1) 被引量:6
标识
DOI:10.1093/bib/bbab363
摘要

Rare diseases occur in a smaller proportion of the general population, which is variedly defined as less than 200 000 individuals (US) or in less than 1 in 2000 individuals (Europe). Although rare, they collectively make up to approximately 7000 different disorders, with majority having a genetic origin, and affect roughly 300 million people globally. Most of the patients and their families undergo a long and frustrating diagnostic odyssey. However, advances in the field of genomics have started to facilitate the process of diagnosis, though it is hindered by the difficulty in genome data analysis and interpretation. A major impediment in diagnosis is in the understanding of the diverse approaches, tools and datasets available for variant prioritization, the most important step in the analysis of millions of variants to select a few potential variants. Here we present a review of the latest methodological developments and spectrum of tools available for rare disease genetic variant discovery and recommend appropriate data interpretation methods for variant prioritization. We have categorized the resources based on various steps of the variant interpretation workflow, starting from data processing, variant calling, annotation, filtration and finally prioritization, with a special emphasis on the last two steps. The methods discussed here pertain to elucidating the genetic basis of disease in individual patient cases via trio- or family-based analysis of the genome data. We advocate the use of a combination of tools and datasets and to follow multiple iterative approaches to elucidate the potential causative variant.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ruochenzu发布了新的文献求助10
1秒前
香蕉觅云应助ylyao采纳,获得10
1秒前
1秒前
QZZ发布了新的文献求助10
1秒前
1秒前
1秒前
yyymmma发布了新的文献求助10
1秒前
lalala应助zaphkiel采纳,获得10
1秒前
2秒前
Tess发布了新的文献求助10
2秒前
2秒前
赘婿应助邻羟基对苯二酚采纳,获得10
3秒前
龙骑士25发布了新的文献求助10
3秒前
石破天惊完成签到,获得积分10
4秒前
大海发布了新的文献求助10
5秒前
5秒前
shuai发布了新的文献求助10
6秒前
慕青应助111采纳,获得10
6秒前
6秒前
Hello应助科研通管家采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
6秒前
zzz完成签到,获得积分10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
7秒前
hanyang965发布了新的文献求助10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
123发布了新的文献求助10
7秒前
7秒前
NexusExplorer应助科研通管家采纳,获得30
7秒前
爆米花应助杨哈哈采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
wanci应助QZZ采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
8秒前
科目三应助笨笨水云采纳,获得10
8秒前
彭于晏应助Xuuu采纳,获得10
8秒前
zfh1341完成签到,获得积分10
8秒前
快乐的花果山完成签到 ,获得积分10
8秒前
斯文败类应助蕾蕾采纳,获得10
8秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Analytical Model of Threshold Voltage for Narrow Width Metal Oxide Semiconductor Field Effect Transistors 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309200
求助须知:如何正确求助?哪些是违规求助? 2942533
关于积分的说明 8509490
捐赠科研通 2617712
什么是DOI,文献DOI怎么找? 1430268
科研通“疑难数据库(出版商)”最低求助积分说明 664108
邀请新用户注册赠送积分活动 649272