磁性
铁电性
凝聚态物理
反铁磁性
铁磁性
材料科学
范德瓦尔斯力
多铁性
物理
结晶学
自旋电子学
光电子学
化学
电介质
量子力学
分子
作者
Haixia Cheng,Jun Zhou,Cong Wang,Wei Ji,Yanning Zhang
出处
期刊:Physical review
日期:2021-08-26
卷期号:104 (6)
被引量:37
标识
DOI:10.1103/physrevb.104.064443
摘要
Electrical control of magnetism is of great interest for low-energy-consumption spintronic applications. Here, via first-principles calculations, we propose a van der Waals (vdW) multiferroic heterostructure composed of a magnetic ${\mathrm{CrI}}_{3}$ bilayer and a ferroelectric \ensuremath{\alpha}-${\mathrm{In}}_{2}{\mathrm{Se}}_{3}$ monolayer substrate. Interestingly, the interlayer magnetism of bilayer ${\mathrm{CrI}}_{3}$ is switchable between the ferromagnetic and antiferromagnetic coupling by nonvolatile control of the ferroelectric polarization direction of \ensuremath{\alpha}-${\mathrm{In}}_{2}{\mathrm{Se}}_{3}$. The interlayer magnetic coupling of ${\mathrm{CrI}}_{3}$ bilayer originates from the direct interaction of adjacent I atoms between ${\mathrm{CrI}}_{3}$ monolayers, which can be tuned by the polarization of ${\mathrm{In}}_{2}{\mathrm{Se}}_{3}$, explaining the electrical control of interlayer magnetic phase transition. Our work demonstrates a multiferroelectric material platform by artificially stacking two dimensional vdW layers, providing an effective method for achieving nonvolatile electrical control of atomic-thin vdW ferromagnets.
科研通智能强力驱动
Strongly Powered by AbleSci AI