Temperature Measurement of Metal Surface at Normal Temperatures by Visible Images and Machine Learning

RGB颜色模型 人工智能 温度测量 计算机视觉 计算机科学 材料科学 直方图 模式识别(心理学) 图像(数学) 物理 量子力学
作者
Zhe Yuan,Qizheng Ye,Yuwei Wang,Hao Shi
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-16 被引量:5
标识
DOI:10.1109/tim.2021.3112003
摘要

Thermal radiant energy of metal surfaces is weak in visible bands at normal temperatures, making it difficult to perform non-contact temperature measurements by visible images based on thermal radiation principle. However, this paper proposed an intelligent temperature measurement method of metal surfaces at normal temperatures in sunlight based on thermal-modulated reflection. A digital camera was used to take photos of iron, aluminum alloy, and copper, with their temperature ranging from 26.0°C to 100.0°C. These images composed three corresponding image libraries of these materials. For each image in each library, two kinds of statistical features, RGB gray level histograms (RGB-GLHs) and deep semantic chromatic features (DSCFs), were extracted and labeled by the image’s corresponding measured temperature, forming two kinds of Feature-Label datasets of the image library. For each library, both kinds of Feature-Label datasets were used to train machine learning (ML) models for temperature prediction. Besides, a baseline model, Resnet50, was trained for temperature prediction. Results showed that the trained ML models predicted the surface temperature of these materials well. Models trained by DSCFs greatly improved prediction accuracy compared with those trained by RGB-GLHs and Resnet50. The K-Nearest Neighbor models had a mean absolute error under 1.0. Meanwhile, using DSCFs significantly saved the calculation time and data storage spaces. This method would provide a new choice for the temperature measurement of electrical equipment’s metal parts and other cases requiring non-contact measurements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
jcxl发布了新的文献求助10
1秒前
嘻嘻嘻完成签到,获得积分10
1秒前
2秒前
2秒前
隐形曼青应助wind采纳,获得10
2秒前
ccy发布了新的文献求助10
2秒前
赵本山完成签到,获得积分10
3秒前
集力申完成签到,获得积分10
3秒前
Wrl完成签到,获得积分10
3秒前
nickel完成签到,获得积分10
4秒前
4秒前
无语的从云完成签到,获得积分10
5秒前
LF发布了新的文献求助10
5秒前
一禅完成签到 ,获得积分10
5秒前
搜集达人应助赵先森采纳,获得10
5秒前
骄傲慕尼黑完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
syx发布了新的文献求助10
7秒前
隐形路灯应助gnr2000采纳,获得10
7秒前
nickel发布了新的文献求助10
7秒前
7秒前
8秒前
yyyyyyf完成签到,获得积分10
9秒前
wangyf发布了新的文献求助10
9秒前
9秒前
无奈的萝发布了新的文献求助10
9秒前
raiychemj完成签到,获得积分10
9秒前
沈言应助Luchy采纳,获得10
10秒前
SciGPT应助简单的呆呆采纳,获得10
11秒前
无名之辈完成签到,获得积分10
11秒前
liubaibai2333发布了新的文献求助20
11秒前
秋秋完成签到,获得积分10
12秒前
智慧吗喽发布了新的文献求助10
12秒前
顾矜应助三江采纳,获得10
12秒前
13秒前
silence完成签到 ,获得积分10
13秒前
Ava应助上邪采纳,获得10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307880
求助须知:如何正确求助?哪些是违规求助? 2941451
关于积分的说明 8503412
捐赠科研通 2615951
什么是DOI,文献DOI怎么找? 1429290
科研通“疑难数据库(出版商)”最低求助积分说明 663712
邀请新用户注册赠送积分活动 648671