已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Temperature Measurement of Metal Surface at Normal Temperatures by Visible Images and Machine Learning

RGB颜色模型 人工智能 温度测量 计算机视觉 计算机科学 材料科学 直方图 模式识别(心理学) 图像(数学) 物理 量子力学
作者
Zhe Yuan,Qizheng Ye,Yuwei Wang,Hao Shi
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-16 被引量:5
标识
DOI:10.1109/tim.2021.3112003
摘要

Thermal radiant energy of metal surfaces is weak in visible bands at normal temperatures, making it difficult to perform non-contact temperature measurements by visible images based on thermal radiation principle. However, this paper proposed an intelligent temperature measurement method of metal surfaces at normal temperatures in sunlight based on thermal-modulated reflection. A digital camera was used to take photos of iron, aluminum alloy, and copper, with their temperature ranging from 26.0°C to 100.0°C. These images composed three corresponding image libraries of these materials. For each image in each library, two kinds of statistical features, RGB gray level histograms (RGB-GLHs) and deep semantic chromatic features (DSCFs), were extracted and labeled by the image’s corresponding measured temperature, forming two kinds of Feature-Label datasets of the image library. For each library, both kinds of Feature-Label datasets were used to train machine learning (ML) models for temperature prediction. Besides, a baseline model, Resnet50, was trained for temperature prediction. Results showed that the trained ML models predicted the surface temperature of these materials well. Models trained by DSCFs greatly improved prediction accuracy compared with those trained by RGB-GLHs and Resnet50. The K-Nearest Neighbor models had a mean absolute error under 1.0. Meanwhile, using DSCFs significantly saved the calculation time and data storage spaces. This method would provide a new choice for the temperature measurement of electrical equipment’s metal parts and other cases requiring non-contact measurements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小鹿嘻嘻发布了新的文献求助10
2秒前
3秒前
4秒前
woleaisa发布了新的文献求助10
4秒前
wuhao完成签到,获得积分10
6秒前
zlf发布了新的文献求助10
7秒前
不安青牛应助科研通管家采纳,获得10
8秒前
852应助科研通管家采纳,获得10
8秒前
隐形曼青应助拉扣采纳,获得10
16秒前
子凡完成签到 ,获得积分10
17秒前
19秒前
淡漠完成签到 ,获得积分10
20秒前
21秒前
bioglia完成签到,获得积分10
22秒前
24秒前
AlwaysKim发布了新的文献求助10
24秒前
渊_完成签到 ,获得积分10
24秒前
zlf完成签到,获得积分10
26秒前
杨小辉发布了新的文献求助10
29秒前
菲1208完成签到,获得积分10
30秒前
田様应助.....采纳,获得10
30秒前
空2完成签到 ,获得积分0
30秒前
31秒前
32秒前
材料生发布了新的文献求助10
35秒前
杨小辉完成签到,获得积分20
36秒前
隐形的雁完成签到,获得积分10
37秒前
李健完成签到,获得积分10
40秒前
材料生完成签到,获得积分10
41秒前
archer01完成签到,获得积分20
41秒前
42秒前
42秒前
Ahui完成签到 ,获得积分10
44秒前
44秒前
量子星尘发布了新的文献求助10
44秒前
46秒前
洛洛发布了新的文献求助10
46秒前
47秒前
ersheng发布了新的文献求助10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482161
求助须知:如何正确求助?哪些是违规求助? 4583088
关于积分的说明 14388474
捐赠科研通 4511969
什么是DOI,文献DOI怎么找? 2472656
邀请新用户注册赠送积分活动 1458923
关于科研通互助平台的介绍 1432309