Temperature Measurement of Metal Surface at Normal Temperatures by Visible Images and Machine Learning

RGB颜色模型 人工智能 温度测量 计算机视觉 计算机科学 材料科学 直方图 模式识别(心理学) 图像(数学) 物理 量子力学
作者
Zhe Yuan,Qizheng Ye,Yuwei Wang,Hao Shi
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-16 被引量:5
标识
DOI:10.1109/tim.2021.3112003
摘要

Thermal radiant energy of metal surfaces is weak in visible bands at normal temperatures, making it difficult to perform non-contact temperature measurements by visible images based on thermal radiation principle. However, this paper proposed an intelligent temperature measurement method of metal surfaces at normal temperatures in sunlight based on thermal-modulated reflection. A digital camera was used to take photos of iron, aluminum alloy, and copper, with their temperature ranging from 26.0°C to 100.0°C. These images composed three corresponding image libraries of these materials. For each image in each library, two kinds of statistical features, RGB gray level histograms (RGB-GLHs) and deep semantic chromatic features (DSCFs), were extracted and labeled by the image’s corresponding measured temperature, forming two kinds of Feature-Label datasets of the image library. For each library, both kinds of Feature-Label datasets were used to train machine learning (ML) models for temperature prediction. Besides, a baseline model, Resnet50, was trained for temperature prediction. Results showed that the trained ML models predicted the surface temperature of these materials well. Models trained by DSCFs greatly improved prediction accuracy compared with those trained by RGB-GLHs and Resnet50. The K-Nearest Neighbor models had a mean absolute error under 1.0. Meanwhile, using DSCFs significantly saved the calculation time and data storage spaces. This method would provide a new choice for the temperature measurement of electrical equipment’s metal parts and other cases requiring non-contact measurements.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
一只耳发布了新的文献求助10
1秒前
glacier发布了新的文献求助10
3秒前
KYDZZ应助知世耶采纳,获得10
4秒前
5秒前
小蘑菇应助sun采纳,获得10
7秒前
量子星尘发布了新的文献求助10
9秒前
科研小菜发布了新的文献求助20
11秒前
shhoing应助Bill采纳,获得10
11秒前
12秒前
123完成签到 ,获得积分10
12秒前
KUN完成签到,获得积分10
13秒前
liberal完成签到,获得积分10
14秒前
14秒前
14秒前
燕双鹰完成签到,获得积分10
15秒前
hahaha完成签到,获得积分20
15秒前
丘比特应助fffgz采纳,获得10
15秒前
15秒前
熊风发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
hahaha发布了新的文献求助10
18秒前
陈帅洲发布了新的文献求助10
19秒前
本宫还能学完成签到,获得积分10
20秒前
领导范儿应助成就的涵菡采纳,获得10
20秒前
lingjunjie发布了新的文献求助10
20秒前
麦子完成签到,获得积分10
21秒前
sun发布了新的文献求助10
22秒前
123456发布了新的文献求助10
22秒前
abu发布了新的文献求助10
22秒前
23秒前
23秒前
天天快乐应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得10
24秒前
英俊的铭应助科研通管家采纳,获得10
24秒前
十三应助科研通管家采纳,获得10
24秒前
桐桐应助科研通管家采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536588
求助须知:如何正确求助?哪些是违规求助? 4624228
关于积分的说明 14591085
捐赠科研通 4564722
什么是DOI,文献DOI怎么找? 2501884
邀请新用户注册赠送积分活动 1480627
关于科研通互助平台的介绍 1451937