亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Temperature Measurement of Metal Surface at Normal Temperatures by Visible Images and Machine Learning

RGB颜色模型 人工智能 温度测量 计算机视觉 计算机科学 材料科学 直方图 模式识别(心理学) 图像(数学) 物理 量子力学
作者
Zhe Yuan,Qizheng Ye,Yuwei Wang,Hao Shi
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-16 被引量:5
标识
DOI:10.1109/tim.2021.3112003
摘要

Thermal radiant energy of metal surfaces is weak in visible bands at normal temperatures, making it difficult to perform non-contact temperature measurements by visible images based on thermal radiation principle. However, this paper proposed an intelligent temperature measurement method of metal surfaces at normal temperatures in sunlight based on thermal-modulated reflection. A digital camera was used to take photos of iron, aluminum alloy, and copper, with their temperature ranging from 26.0°C to 100.0°C. These images composed three corresponding image libraries of these materials. For each image in each library, two kinds of statistical features, RGB gray level histograms (RGB-GLHs) and deep semantic chromatic features (DSCFs), were extracted and labeled by the image’s corresponding measured temperature, forming two kinds of Feature-Label datasets of the image library. For each library, both kinds of Feature-Label datasets were used to train machine learning (ML) models for temperature prediction. Besides, a baseline model, Resnet50, was trained for temperature prediction. Results showed that the trained ML models predicted the surface temperature of these materials well. Models trained by DSCFs greatly improved prediction accuracy compared with those trained by RGB-GLHs and Resnet50. The K-Nearest Neighbor models had a mean absolute error under 1.0. Meanwhile, using DSCFs significantly saved the calculation time and data storage spaces. This method would provide a new choice for the temperature measurement of electrical equipment’s metal parts and other cases requiring non-contact measurements.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
Jasper应助世良采纳,获得10
11秒前
ceeray23应助科研通管家采纳,获得10
11秒前
归尘应助科研通管家采纳,获得10
11秒前
归尘应助科研通管家采纳,获得10
11秒前
11秒前
归尘应助科研通管家采纳,获得10
11秒前
归尘应助科研通管家采纳,获得10
12秒前
18秒前
世良发布了新的文献求助10
22秒前
31秒前
典雅的面包完成签到,获得积分10
31秒前
体贴花卷发布了新的文献求助10
36秒前
大模型应助世良采纳,获得10
39秒前
44秒前
汉堡包应助体贴花卷采纳,获得10
1分钟前
柴胡完成签到,获得积分10
1分钟前
1分钟前
世良发布了新的文献求助10
1分钟前
林大壮发布了新的文献求助10
1分钟前
1分钟前
1分钟前
体贴花卷发布了新的文献求助10
1分钟前
Ru完成签到 ,获得积分10
1分钟前
星辰大海应助体贴花卷采纳,获得10
1分钟前
2分钟前
chen发布了新的文献求助10
2分钟前
归尘应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
思源应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
张张完成签到 ,获得积分10
2分钟前
科研通AI6应助chen采纳,获得10
2分钟前
领导范儿应助世良采纳,获得10
2分钟前
xuanxuan完成签到 ,获得积分10
2分钟前
cherish完成签到,获得积分10
2分钟前
进击的PhD完成签到 ,获得积分0
2分钟前
2分钟前
儒雅完成签到 ,获得积分10
2分钟前
世良发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650780
求助须知:如何正确求助?哪些是违规求助? 4781689
关于积分的说明 15052597
捐赠科研通 4809594
什么是DOI,文献DOI怎么找? 2572392
邀请新用户注册赠送积分活动 1528494
关于科研通互助平台的介绍 1487373