亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Temperature Measurement of Metal Surface at Normal Temperatures by Visible Images and Machine Learning

RGB颜色模型 人工智能 温度测量 计算机视觉 计算机科学 材料科学 直方图 模式识别(心理学) 图像(数学) 物理 量子力学
作者
Zhe Yuan,Qizheng Ye,Yuwei Wang,Hao Shi
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-16 被引量:5
标识
DOI:10.1109/tim.2021.3112003
摘要

Thermal radiant energy of metal surfaces is weak in visible bands at normal temperatures, making it difficult to perform non-contact temperature measurements by visible images based on thermal radiation principle. However, this paper proposed an intelligent temperature measurement method of metal surfaces at normal temperatures in sunlight based on thermal-modulated reflection. A digital camera was used to take photos of iron, aluminum alloy, and copper, with their temperature ranging from 26.0°C to 100.0°C. These images composed three corresponding image libraries of these materials. For each image in each library, two kinds of statistical features, RGB gray level histograms (RGB-GLHs) and deep semantic chromatic features (DSCFs), were extracted and labeled by the image’s corresponding measured temperature, forming two kinds of Feature-Label datasets of the image library. For each library, both kinds of Feature-Label datasets were used to train machine learning (ML) models for temperature prediction. Besides, a baseline model, Resnet50, was trained for temperature prediction. Results showed that the trained ML models predicted the surface temperature of these materials well. Models trained by DSCFs greatly improved prediction accuracy compared with those trained by RGB-GLHs and Resnet50. The K-Nearest Neighbor models had a mean absolute error under 1.0. Meanwhile, using DSCFs significantly saved the calculation time and data storage spaces. This method would provide a new choice for the temperature measurement of electrical equipment’s metal parts and other cases requiring non-contact measurements.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助科研通管家采纳,获得10
5秒前
shhoing应助科研通管家采纳,获得10
5秒前
Everything完成签到,获得积分10
7秒前
1分钟前
2分钟前
2分钟前
Yikao完成签到 ,获得积分10
3分钟前
ZIJUNZHAO完成签到 ,获得积分10
3分钟前
斯文败类应助科研通管家采纳,获得10
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
总是很简单完成签到 ,获得积分10
4分钟前
Ykaor完成签到 ,获得积分10
4分钟前
古铜完成签到 ,获得积分10
4分钟前
4分钟前
乐正文涛发布了新的文献求助10
4分钟前
ajing完成签到,获得积分10
4分钟前
QYQ完成签到 ,获得积分10
4分钟前
msk完成签到 ,获得积分10
5分钟前
乐正怡完成签到 ,获得积分10
6分钟前
shhoing应助科研通管家采纳,获得10
6分钟前
FMHChan完成签到,获得积分10
6分钟前
cy0824完成签到 ,获得积分10
7分钟前
wodetaiyangLLL完成签到 ,获得积分10
7分钟前
shhoing应助科研通管家采纳,获得10
8分钟前
shhoing应助科研通管家采纳,获得10
8分钟前
8分钟前
铭铭完成签到 ,获得积分10
8分钟前
FashionBoy应助科研通管家采纳,获得10
10分钟前
shhoing应助科研通管家采纳,获得10
10分钟前
科研通AI6应助科研通管家采纳,获得10
10分钟前
Attaa完成签到,获得积分10
11分钟前
11分钟前
木木发布了新的文献求助10
11分钟前
11分钟前
12分钟前
gexzygg应助科研通管家采纳,获得10
12分钟前
gexzygg应助科研通管家采纳,获得10
12分钟前
shhoing应助科研通管家采纳,获得10
12分钟前
gexzygg应助科研通管家采纳,获得10
12分钟前
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561535
求助须知:如何正确求助?哪些是违规求助? 4646630
关于积分的说明 14678717
捐赠科研通 4587966
什么是DOI,文献DOI怎么找? 2517258
邀请新用户注册赠送积分活动 1490540
关于科研通互助平台的介绍 1461557