Competition between Hydrogen Bonding and Dispersion Force in Water Adsorption and Epoxy Adhesion to Boron Nitride: From the Flat to the Curved

伦敦分散部队 材料科学 化学物理 吸附 色散(光学) 氮化硼 单独一对 离域电子 氢键 化学 结晶学 计算化学 纳米技术 范德瓦尔斯力 分子 物理化学 有机化学 光学 物理
作者
Yuta Tsuji,Kazunari Yoshizawa
出处
期刊:Langmuir [American Chemical Society]
卷期号:37 (38): 11351-11364 被引量:19
标识
DOI:10.1021/acs.langmuir.1c01935
摘要

Hexagonal boron nitride (h-BN) is a material with excellent thermal conductivity and electrical insulation, used as an additive to various matrices. To increase the affinity of h-BN to them, hydrogen bonds should be formed at the interface. In reality, however, they are not formed; the N atoms are not capable of accepting hydrogen bonds due to the delocalization of their lone pair electrons over the B–N π bonds. To make it form hydrogen bonds, one may need to break the planarity of h-BN so that the orbital overlap in the B–N π bonds can be reduced. This idea is verified with first-principles calculations on the adsorption of a water molecule on hypothetical h-BN surfaces, the planarity of which is broken. One can do it in silico but not in vitro. BN nanotubes (BNNTs) are considered as a more realistic BN surface with nonplanarity. The hydrogen bond is shown to become stronger as the curvature of the tube increases. On the contrary, the strength of the dispersion force acting at the interface becomes weaker. In water adsorption, these two interactions are in competition with each other. However, in epoxy adhesion, the interaction due to dispersion forces is overwhelmingly stronger than that due to hydrogen bonding. The smaller the curvature of the surface, the smaller the distance between more atoms at the interface; thus, the interaction due to dispersion forces maximized.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专一的笑阳完成签到 ,获得积分10
刚刚
xuesensu完成签到 ,获得积分10
4秒前
豌豆完成签到,获得积分10
5秒前
M先生完成签到,获得积分10
5秒前
6秒前
8秒前
科研通AI5应助sun采纳,获得10
8秒前
shitzu完成签到 ,获得积分10
9秒前
choco发布了新的文献求助10
11秒前
12秒前
李健的小迷弟应助sun采纳,获得10
12秒前
Jzhang应助liyuchen采纳,获得10
12秒前
魏伯安发布了新的文献求助30
12秒前
jjjjjj发布了新的文献求助30
14秒前
15秒前
伯赏诗霜发布了新的文献求助10
15秒前
糟糕的鹏飞完成签到 ,获得积分10
16秒前
16秒前
欢呼凡旋完成签到,获得积分10
17秒前
韩邹光完成签到,获得积分10
19秒前
xg发布了新的文献求助10
19秒前
20秒前
dktrrrr完成签到,获得积分10
20秒前
季生完成签到,获得积分10
23秒前
徐徐完成签到,获得积分10
23秒前
24秒前
24秒前
haku完成签到,获得积分10
26秒前
可爱的函函应助laodie采纳,获得10
28秒前
Singularity应助忆楠采纳,获得10
29秒前
30秒前
请叫我风吹麦浪应助PengHu采纳,获得30
31秒前
jjjjjj完成签到,获得积分10
31秒前
凝子老师发布了新的文献求助10
33秒前
33秒前
橙子fy16_发布了新的文献求助10
35秒前
cookie完成签到,获得积分10
35秒前
柒柒的小熊完成签到,获得积分10
36秒前
36秒前
Hello应助萌之痴痴采纳,获得10
37秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849