AI on Drugs: Can Artificial Intelligence Accelerate Drug Development? Evidence from a Large-Scale Examination of Bio-Pharma Firms

新颖性 药物发现 计算机科学 人工智能 领域(数学分析) 药物开发 业务 钥匙(锁) 药品 人工智能应用 风险分析(工程) 数据科学 知识管理 比例(比率) 医学 药理学 心理学 计算机安全 生物信息学 量子力学 社会心理学 生物 物理 数学分析 数学
作者
Bowen Lou,Lynn Wu
出处
期刊:Management Information Systems Quarterly [MIS Quarterly]
卷期号:45 (3): 1451-1482 被引量:52
标识
DOI:10.25300/misq/2021/16565
摘要

Advances in artificial intelligence (AI) could potentially reduce the complexities and costs in drug discovery. We conceptualize an AI innovation capability that gauges a firm’s ability to develop, manage, and utilize AI resources for innovation. Using patents and job postings to measure AI innovation capability, we find that it can affect a firm’s discovery of new drug-target pairs for preclinical studies. The effect is particularly pronounced for developing new drugs whose mechanism of impact on a disease is known and for drugs at the medium level of chemical novelty. However, AI is less helpful in developing drugs when there is no existing therapy. AI is also less helpful for drugs that are either entirely novel or those that are incremental “follow-on” drugs. Examining AI skills, a key component of AI innovation capability, we find that the main effect of AI innovation capability comes from employees possessing the combination of AI skills and domain expertise in drug discovery as opposed to employees possessing AI skills only. Having the combination is key because developing and improving AI tools is an iterative process requiring synthesizing inputs from both AI and domain experts during both the development and the operational stages of the tool. Taken together, our study sheds light on both the advantages and the limitations of using AI in drug discovery and how to effectively manage AI resources for drug development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文银耳汤完成签到,获得积分10
1秒前
酷波er应助CHAIZH采纳,获得10
1秒前
自觉馒头发布了新的文献求助10
2秒前
2秒前
zhjeddie完成签到 ,获得积分10
2秒前
3秒前
小刘发布了新的文献求助10
4秒前
5秒前
香蕉擎完成签到,获得积分10
5秒前
三三得九完成签到 ,获得积分10
5秒前
跳跃野狼完成签到,获得积分10
6秒前
郝优佳完成签到,获得积分10
6秒前
纵横天下完成签到,获得积分10
7秒前
WHH完成签到,获得积分10
7秒前
7秒前
璐_发布了新的文献求助10
8秒前
zzz发布了新的文献求助10
9秒前
ding应助一叶扁舟采纳,获得10
9秒前
10秒前
鸿鲤完成签到,获得积分10
11秒前
Anna发布了新的文献求助10
12秒前
15秒前
Monica完成签到,获得积分10
15秒前
16秒前
epmoct完成签到 ,获得积分10
17秒前
yyw完成签到,获得积分10
17秒前
不配.应助Liltony采纳,获得20
17秒前
17秒前
不配.应助虚幻的南蕾采纳,获得10
17秒前
崇林同学完成签到,获得积分10
18秒前
DamenS完成签到,获得积分10
20秒前
小聒完成签到 ,获得积分10
21秒前
22秒前
所所应助zzz采纳,获得10
23秒前
NexusExplorer应助安静无招采纳,获得10
23秒前
23秒前
英俊的铭应助saudade采纳,获得10
24秒前
本尼脸上褶子完成签到 ,获得积分10
25秒前
26秒前
饼饼完成签到,获得积分10
27秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137977
求助须知:如何正确求助?哪些是违规求助? 2788926
关于积分的说明 7789136
捐赠科研通 2445326
什么是DOI,文献DOI怎么找? 1300288
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046