Evaluation of Fischer-Tropsch synthesis to light olefins over Co- and Fe-based catalysts using artificial neural network

费托法 催化作用 产量(工程) 一氧化碳 化石燃料 二氧化碳 材料科学 化学工程 选择性 工艺工程 化学 有机化学 工程类 复合材料
作者
Higor Azevedo Garona,Fábio Machado Cavalcanti,Thiago F. Abreu,Martín Schmal,Rita M.B. Alves
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:321: 129003-129003 被引量:20
标识
DOI:10.1016/j.jclepro.2021.129003
摘要

Abstract Currently, energy transition due to fossil fuel negative side effects is taking place. This transition impacts the chemical industry based on light olefins reactions. Plastics, detergents, polymers, and others are mostly produced from such hydrocarbons, which are mainly originated from oil-based and highly energy-consuming processes. Fischer-Tropsch Synthesis (FTS) is a strategic technology capable to transform a given carbon source, including natural gas and biomass, into high added-value hydrocarbons. It is affected by several conditions, such as catalyst design and operating conditions and its feasibility requires a good selection of relevant process variables to optimize light olefins yield. In this work, Machine Learning models were used to predict adequate reaction conditions from the catalytic literature data. Three-layer feedforward neural networks were adjusted using a careful selection of operating conditions and catalyst composition as inputs and carbon monoxide conversion, light olefins selectivity, and carbon dioxide yield as outputs. The results indicate neural network prediction efficacy for FTS most relevant variables, such as temperature and catalyst composition. This work presents the novelty of including more variables in the model compared to recent similar studies, such as catalyst support, active phase, and promoters as inputs; and light olefins selectivity and CO2 yield as outputs. Overall, Fe-based catalyst (standard Fe (1.6 wt%) K/TiO2) presented the highest light olefins selectivity and yield at optimal conditions (T = 500 °C and 20 wt% of active phase), despite showing the highest emission of carbon dioxide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拼搏梦旋发布了新的文献求助10
1秒前
妩媚的初晴完成签到,获得积分10
1秒前
1秒前
1秒前
着急的青枫应助xiaoming采纳,获得10
1秒前
dddd应助lze采纳,获得10
1秒前
2秒前
落墨发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
压线完成签到 ,获得积分10
4秒前
orixero应助乃惜采纳,获得10
5秒前
善学以致用应助嘟嘟许采纳,获得10
6秒前
6秒前
落寞怜雪发布了新的文献求助10
7秒前
xss发布了新的文献求助30
7秒前
paws发布了新的文献求助10
7秒前
Jaime发布了新的文献求助10
8秒前
8秒前
chunyeliangchuan完成签到,获得积分10
9秒前
压线关注了科研通微信公众号
9秒前
科研通AI5应助鼓励男孩采纳,获得10
10秒前
拼搏梦旋完成签到,获得积分10
11秒前
fanglin123应助yang采纳,获得10
12秒前
研友_VZG7GZ应助fanglihua采纳,获得10
12秒前
12秒前
李健应助小宇子采纳,获得10
12秒前
xss完成签到,获得积分10
13秒前
13秒前
小孩儿完成签到,获得积分10
14秒前
雪妮儿发布了新的文献求助10
15秒前
15秒前
漂亮忆灵完成签到,获得积分10
16秒前
17秒前
Fox完成签到 ,获得积分10
17秒前
17秒前
今后应助尹鹏翔采纳,获得10
18秒前
丘比特应助DDvicky采纳,获得10
19秒前
勤恳的天亦应助ak47采纳,获得20
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
解放军总医院眼科医学部病例精解 1000
温州医科大学附属眼视光医院斜弱视与双眼视病例精解 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4896177
求助须知:如何正确求助?哪些是违规求助? 4177912
关于积分的说明 12969523
捐赠科研通 3941127
什么是DOI,文献DOI怎么找? 2162106
邀请新用户注册赠送积分活动 1180588
关于科研通互助平台的介绍 1086117