Evaluation of Fischer-Tropsch synthesis to light olefins over Co- and Fe-based catalysts using artificial neural network

费托法 催化作用 产量(工程) 一氧化碳 化石燃料 二氧化碳 材料科学 化学工程 选择性 工艺工程 化学 有机化学 工程类 复合材料
作者
Higor Azevedo Garona,Fábio Machado Cavalcanti,Thiago F. Abreu,Martín Schmal,Rita M.B. Alves
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:321: 129003-129003 被引量:20
标识
DOI:10.1016/j.jclepro.2021.129003
摘要

Abstract Currently, energy transition due to fossil fuel negative side effects is taking place. This transition impacts the chemical industry based on light olefins reactions. Plastics, detergents, polymers, and others are mostly produced from such hydrocarbons, which are mainly originated from oil-based and highly energy-consuming processes. Fischer-Tropsch Synthesis (FTS) is a strategic technology capable to transform a given carbon source, including natural gas and biomass, into high added-value hydrocarbons. It is affected by several conditions, such as catalyst design and operating conditions and its feasibility requires a good selection of relevant process variables to optimize light olefins yield. In this work, Machine Learning models were used to predict adequate reaction conditions from the catalytic literature data. Three-layer feedforward neural networks were adjusted using a careful selection of operating conditions and catalyst composition as inputs and carbon monoxide conversion, light olefins selectivity, and carbon dioxide yield as outputs. The results indicate neural network prediction efficacy for FTS most relevant variables, such as temperature and catalyst composition. This work presents the novelty of including more variables in the model compared to recent similar studies, such as catalyst support, active phase, and promoters as inputs; and light olefins selectivity and CO2 yield as outputs. Overall, Fe-based catalyst (standard Fe (1.6 wt%) K/TiO2) presented the highest light olefins selectivity and yield at optimal conditions (T = 500 °C and 20 wt% of active phase), despite showing the highest emission of carbon dioxide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烂漫的煎饼完成签到 ,获得积分10
1秒前
星流xx发布了新的文献求助10
3秒前
4秒前
上官若男应助忐忑的致远采纳,获得10
6秒前
lsq108完成签到,获得积分10
6秒前
7秒前
Dabiel1213完成签到,获得积分10
7秒前
zzh关注了科研通微信公众号
7秒前
9秒前
lsq108发布了新的文献求助10
10秒前
沐曦发布了新的文献求助10
10秒前
10秒前
余乐驹完成签到,获得积分20
11秒前
CodeCraft应助标致的方盒采纳,获得10
12秒前
Jeffery426发布了新的文献求助10
13秒前
13秒前
大气白枫完成签到,获得积分10
13秒前
天Q完成签到,获得积分10
13秒前
余乐驹发布了新的文献求助10
14秒前
Gamiay发布了新的文献求助10
14秒前
15秒前
汉堡包应助美满的冬卉采纳,获得10
15秒前
15秒前
Zzz完成签到,获得积分10
16秒前
lwqz_2022完成签到 ,获得积分10
17秒前
归尘发布了新的文献求助10
17秒前
Ava应助勤奋新晴采纳,获得10
18秒前
美好雁凡完成签到,获得积分20
19秒前
liuhui发布了新的文献求助10
19秒前
沐曦完成签到,获得积分10
19秒前
王果果发布了新的文献求助10
20秒前
orixero应助Jeffery426采纳,获得10
20秒前
qzycq完成签到,获得积分10
21秒前
21秒前
21秒前
22秒前
大碗完成签到 ,获得积分10
22秒前
美好雁凡发布了新的文献求助10
22秒前
微微发布了新的文献求助20
22秒前
科研通AI2S应助科研通管家采纳,获得100
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312100
求助须知:如何正确求助?哪些是违规求助? 2944743
关于积分的说明 8521216
捐赠科研通 2620426
什么是DOI,文献DOI怎么找? 1432831
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650106