Evaluation of Fischer-Tropsch synthesis to light olefins over Co- and Fe-based catalysts using artificial neural network

费托法 催化作用 产量(工程) 一氧化碳 化石燃料 二氧化碳 材料科学 化学工程 选择性 工艺工程 化学 有机化学 工程类 复合材料
作者
Higor Azevedo Garona,Fábio Machado Cavalcanti,Thiago F. Abreu,Martín Schmal,Rita M.B. Alves
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:321: 129003-129003 被引量:20
标识
DOI:10.1016/j.jclepro.2021.129003
摘要

Abstract Currently, energy transition due to fossil fuel negative side effects is taking place. This transition impacts the chemical industry based on light olefins reactions. Plastics, detergents, polymers, and others are mostly produced from such hydrocarbons, which are mainly originated from oil-based and highly energy-consuming processes. Fischer-Tropsch Synthesis (FTS) is a strategic technology capable to transform a given carbon source, including natural gas and biomass, into high added-value hydrocarbons. It is affected by several conditions, such as catalyst design and operating conditions and its feasibility requires a good selection of relevant process variables to optimize light olefins yield. In this work, Machine Learning models were used to predict adequate reaction conditions from the catalytic literature data. Three-layer feedforward neural networks were adjusted using a careful selection of operating conditions and catalyst composition as inputs and carbon monoxide conversion, light olefins selectivity, and carbon dioxide yield as outputs. The results indicate neural network prediction efficacy for FTS most relevant variables, such as temperature and catalyst composition. This work presents the novelty of including more variables in the model compared to recent similar studies, such as catalyst support, active phase, and promoters as inputs; and light olefins selectivity and CO2 yield as outputs. Overall, Fe-based catalyst (standard Fe (1.6 wt%) K/TiO2) presented the highest light olefins selectivity and yield at optimal conditions (T = 500 °C and 20 wt% of active phase), despite showing the highest emission of carbon dioxide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助靥礼服采纳,获得10
1秒前
坦率冰旋完成签到,获得积分10
3秒前
astost完成签到,获得积分10
3秒前
rayce发布了新的文献求助10
3秒前
chen完成签到,获得积分10
4秒前
一缕阳光完成签到,获得积分10
4秒前
7秒前
Hysen_L发布了新的文献求助10
8秒前
my196755发布了新的文献求助10
11秒前
11秒前
younghippo完成签到,获得积分10
11秒前
HHH发布了新的文献求助10
12秒前
SYLH应助amin采纳,获得10
14秒前
14秒前
桐桐应助无味采纳,获得30
15秒前
wangling2333完成签到,获得积分10
15秒前
文静映安发布了新的文献求助10
16秒前
tuzhifengyin完成签到,获得积分10
17秒前
懒羊羊完成签到,获得积分10
18秒前
学术芽完成签到,获得积分10
19秒前
rayce完成签到,获得积分10
20秒前
20秒前
my196755完成签到,获得积分10
23秒前
24秒前
曾经小伙完成签到 ,获得积分10
24秒前
lili完成签到 ,获得积分10
24秒前
爆米花应助HHH采纳,获得10
24秒前
Pandaer发布了新的文献求助10
27秒前
甘蓝型油菜完成签到,获得积分10
27秒前
哈喽发布了新的文献求助10
29秒前
温婉的翎完成签到,获得积分10
29秒前
Hello应助无味采纳,获得10
29秒前
铲铲完成签到,获得积分10
31秒前
31秒前
YangChunyan完成签到,获得积分10
31秒前
文静映安完成签到,获得积分20
33秒前
yyyy完成签到 ,获得积分20
34秒前
HHH完成签到,获得积分10
38秒前
充电宝应助旺仔Mario采纳,获得10
38秒前
38秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950988
求助须知:如何正确求助?哪些是违规求助? 3496346
关于积分的说明 11081695
捐赠科研通 3226885
什么是DOI,文献DOI怎么找? 1784005
邀请新用户注册赠送积分活动 868114
科研通“疑难数据库(出版商)”最低求助积分说明 800993