Evaluation of Fischer-Tropsch synthesis to light olefins over Co- and Fe-based catalysts using artificial neural network

费托法 催化作用 产量(工程) 一氧化碳 化石燃料 二氧化碳 材料科学 化学工程 选择性 工艺工程 化学 有机化学 工程类 复合材料
作者
Higor Azevedo Garona,Fábio Machado Cavalcanti,Thiago F. Abreu,Martín Schmal,Rita M.B. Alves
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:321: 129003-129003 被引量:20
标识
DOI:10.1016/j.jclepro.2021.129003
摘要

Abstract Currently, energy transition due to fossil fuel negative side effects is taking place. This transition impacts the chemical industry based on light olefins reactions. Plastics, detergents, polymers, and others are mostly produced from such hydrocarbons, which are mainly originated from oil-based and highly energy-consuming processes. Fischer-Tropsch Synthesis (FTS) is a strategic technology capable to transform a given carbon source, including natural gas and biomass, into high added-value hydrocarbons. It is affected by several conditions, such as catalyst design and operating conditions and its feasibility requires a good selection of relevant process variables to optimize light olefins yield. In this work, Machine Learning models were used to predict adequate reaction conditions from the catalytic literature data. Three-layer feedforward neural networks were adjusted using a careful selection of operating conditions and catalyst composition as inputs and carbon monoxide conversion, light olefins selectivity, and carbon dioxide yield as outputs. The results indicate neural network prediction efficacy for FTS most relevant variables, such as temperature and catalyst composition. This work presents the novelty of including more variables in the model compared to recent similar studies, such as catalyst support, active phase, and promoters as inputs; and light olefins selectivity and CO2 yield as outputs. Overall, Fe-based catalyst (standard Fe (1.6 wt%) K/TiO2) presented the highest light olefins selectivity and yield at optimal conditions (T = 500 °C and 20 wt% of active phase), despite showing the highest emission of carbon dioxide.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lllllllll完成签到,获得积分10
刚刚
科研通AI6应助Na采纳,获得30
1秒前
霸气曼彤发布了新的文献求助10
1秒前
2秒前
2秒前
香蕉觅云应助美丽梦桃采纳,获得10
7秒前
7秒前
华仔应助qdd采纳,获得10
8秒前
共享精神应助胡萝卜采纳,获得10
9秒前
科目三应助FAN采纳,获得10
9秒前
充电宝应助CC采纳,获得10
9秒前
joey完成签到 ,获得积分10
10秒前
考拉完成签到,获得积分10
12秒前
13秒前
15秒前
科研通AI6应助liang2508采纳,获得10
15秒前
16秒前
劣根发布了新的文献求助10
17秒前
科目三应助伶俐雅山采纳,获得10
17秒前
美丽梦桃发布了新的文献求助10
19秒前
Orange应助刘刘采纳,获得10
19秒前
qdd发布了新的文献求助10
22秒前
22秒前
22秒前
24秒前
24秒前
26秒前
LeafLight发布了新的文献求助10
27秒前
小木子发布了新的文献求助10
28秒前
ewmmel完成签到 ,获得积分10
28秒前
哎呀发布了新的文献求助10
28秒前
29秒前
29秒前
胡萝卜发布了新的文献求助10
29秒前
VDC应助slycmd采纳,获得30
30秒前
所所应助故事讲完啦采纳,获得10
30秒前
上官若男应助听话的黑猫采纳,获得10
31秒前
你好呀嘻嘻完成签到 ,获得积分10
32秒前
32秒前
邓邓完成签到,获得积分20
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Corrosion and corrosion control 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5373872
求助须知:如何正确求助?哪些是违规求助? 4499905
关于积分的说明 14007520
捐赠科研通 4406884
什么是DOI,文献DOI怎么找? 2420755
邀请新用户注册赠送积分活动 1413471
关于科研通互助平台的介绍 1390076