Dumbbell-Like Fe3O4@N-Doped Carbon@2H/1T-MoS2 with Tailored Magnetic and Dielectric Loss for Efficient Microwave Absorbing

材料科学 微波食品加热 电介质 介电损耗 光电子学 纳米技术 纳米结构 电磁辐射 兴奋剂 衰减 光学 量子力学 物理
作者
Mingqiang Ning,Zhenkuang Lei,Guoguo Tan,Qikui Man,Jingbo Li,Run‐Wei Li
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (39): 47061-47071 被引量:78
标识
DOI:10.1021/acsami.1c13852
摘要

Ferroferric oxide (Fe3O4)/C composites have received much attention as a result of converting electromagnetic waves to heat for harvesting efficient electromagnetic wave (EMW) absorbing performance. However, the practical EMW absorbing of these absorbers is still greatly hindered by the unmatched impedance properties and limited EMW absorbing ability. Tuning the morphologies at nanoscale and assembling the nanoarchitecture construction are essential to address this issue. Herein, dumbbell-like Fe3O4@N-doped carbon (NC)@2H/1T-MoS2 yolk–shell nanostructures are rationally designed and fabricated via a facile etching and wet chemical synthesis strategy. By manipulating the etching time toward the magnetic Fe3O4 component, the dielectric and magnetic loss of absorbers could be well-tuned, thus achieving the optimized impedance characteristics. As a result, the maximum refection losses (RLmaxs) of Fe3O4@NC-9h and Fe3O4@NC-15h are −19.8 dB@7.9 GHz and −39.5 dB@8.3 GHz, respectively. Moreover, the MoS2 nanosheets with a mixed 2H/1T phase anchored on Fe3O4@NC-15h (Fe3O4@NC-15h@MoS2) further boost the RLmax to −68.9 dB@5.8 GHz with an effective absorbing bandwidth of ∼5.25 GHz. The tailored synergistic effect between dielectric and magnetic loss and the introduced interfacial polarization (Fe3O4@NC/MoS2) are discussed to explain the drastically enhanced microwave absorbing ability. This work opens up new possibilities for effective manipulation of electromagnetic wave attenuation performance in magnetic–dielectric-type nanostructures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伶俐乌完成签到,获得积分10
刚刚
刘忙发布了新的文献求助30
刚刚
乔乔完成签到,获得积分10
1秒前
没有昵称完成签到,获得积分10
1秒前
2秒前
kwai完成签到,获得积分10
3秒前
5秒前
刘永红发布了新的文献求助30
5秒前
lilili应助YY采纳,获得10
5秒前
丁浩伦完成签到,获得积分10
5秒前
研友_nEjYyZ发布了新的文献求助10
6秒前
123345发布了新的文献求助10
7秒前
wwww威完成签到,获得积分10
8秒前
平常丝完成签到,获得积分10
9秒前
9秒前
10秒前
Jasper应助Steplan采纳,获得10
12秒前
wangzhao完成签到,获得积分10
12秒前
13秒前
律政俏佳人完成签到 ,获得积分10
13秒前
13秒前
15秒前
15秒前
16秒前
16秒前
zz关闭了zz文献求助
20秒前
21秒前
刘永红发布了新的文献求助10
21秒前
tufei完成签到,获得积分10
22秒前
科研通AI2S应助能干的明轩采纳,获得10
22秒前
PhD-SCAU完成签到,获得积分10
23秒前
皮皮虾完成签到 ,获得积分10
26秒前
30秒前
31秒前
镓氧锌钇铀应助hyt采纳,获得10
32秒前
万能图书馆应助hyt采纳,获得10
32秒前
33秒前
35秒前
筱筱完成签到 ,获得积分10
36秒前
烟花应助科研通管家采纳,获得10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299791
求助须知:如何正确求助?哪些是违规求助? 4447880
关于积分的说明 13844002
捐赠科研通 4333488
什么是DOI,文献DOI怎么找? 2378859
邀请新用户注册赠送积分活动 1374089
关于科研通互助平台的介绍 1339658