Low-dose CT denoising via convolutional neural network with an observer loss function.

计算机科学 人工智能 降噪 噪音(视频) 卷积神经网络 图像质量 模式识别(心理学) 图像噪声 算法 迭代重建 医学影像学 深度学习
作者
Minah Han,Hyunjung Shim,Jongduk Baek
出处
期刊:Medical Physics [Wiley]
卷期号:48 (10): 5727-5742
标识
DOI:10.1002/mp.15161
摘要

Purpose Convolutional neural network (CNN)-based denoising is an effective method for reducing complex computed tomography (CT) noise. However, the image blur induced by denoising processes is a major concern. The main source of image blur is the pixel-level loss (e.g., mean squared error [MSE] and mean absolute error [MAE]) used to train a CNN denoiser. To reduce the image blur, feature-level loss is utilized to train a CNN denoiser. A CNN denoiser trained using visual geometry group (VGG) loss can preserve the small structures, edges, and texture of the image.However, VGG loss, derived from an ImageNet-pretrained image classifier, is not optimal for training a CNN denoiser for CT images. ImageNet contains natural RGB images, so the features extracted by the ImageNet-pretrained model cannot represent the characteristics of CT images that are highly correlated with diagnosis. Furthermore, a CNN denoiser trained with VGG loss causes bias in CT number. Therefore, we propose to use a binary classification network trained using CT images as a feature extractor and newly define the feature-level loss as observer loss. Methods As obtaining labeled CT images for training classification network is difficult, we create labels by inserting simulated lesions. We conduct two separate classification tasks, signal-known-exactly (SKE) and signal-known-statistically (SKS), and define the corresponding feature-level losses as SKE loss and SKS loss, respectively. We use SKE loss and SKS loss to train CNN denoiser. Results Compared to pixel-level losses, a CNN denoiser trained using observer loss (i.e., SKE loss and SKS loss) is effective in preserving structure, edge, and texture. Observer loss also resolves the bias in CT number, which is a problem of VGG loss. Comparing observer losses using SKE and SKS tasks, SKS yields images having a more similar noise structure to reference images. Conclusions Using observer loss for training CNN denoiser is effective to preserve structure, edge, and texture in denoised images and prevent the CT number bias. In particular, when using SKS loss, denoised images having a similar noise structure to reference images are generated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿巴阿巴完成签到,获得积分20
2秒前
所所应助yu采纳,获得10
3秒前
4秒前
迷路的小狗完成签到,获得积分10
5秒前
5秒前
英姑应助十月漠北采纳,获得10
6秒前
long11完成签到,获得积分10
6秒前
9秒前
NaNa完成签到,获得积分10
14秒前
15秒前
17秒前
18秒前
稻草人完成签到 ,获得积分10
18秒前
完美世界应助yulian采纳,获得30
20秒前
张立佳完成签到 ,获得积分10
20秒前
不配.应助高大的水壶采纳,获得20
21秒前
QhL发布了新的文献求助10
21秒前
十月漠北发布了新的文献求助10
23秒前
33发布了新的文献求助10
28秒前
Orange应助T_MC郭采纳,获得10
28秒前
29秒前
29秒前
Doinb完成签到,获得积分10
31秒前
yulian发布了新的文献求助30
32秒前
Polymer72应助KJ采纳,获得10
34秒前
云宝发布了新的文献求助10
35秒前
35秒前
36秒前
yulian完成签到,获得积分10
38秒前
40秒前
古月发布了新的文献求助10
41秒前
沉默的画板完成签到,获得积分10
41秒前
41秒前
橙子完成签到,获得积分10
45秒前
barwin发布了新的文献求助10
47秒前
Yifan2024应助CatherineRR采纳,获得50
53秒前
54秒前
barwin完成签到,获得积分10
55秒前
花痴的手套完成签到 ,获得积分10
56秒前
57秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Field Guide to Insects of South Africa 660
Mantodea of the World: Species Catalog 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3398827
求助须知:如何正确求助?哪些是违规求助? 3007347
关于积分的说明 8825552
捐赠科研通 2694651
什么是DOI,文献DOI怎么找? 1476117
科研通“疑难数据库(出版商)”最低求助积分说明 682648
邀请新用户注册赠送积分活动 676150