Deep reinforcement learning based direct torque control strategy for distributed drive electric vehicles considering active safety and energy saving performance

强化学习 扭矩 控制理论(社会学) 计算机科学 过程(计算) 能源消耗 高效能源利用 任务(项目管理) 工程类 能量(信号处理) 马尔可夫决策过程 控制工程 汽车工程 控制(管理) 马尔可夫过程 人工智能 系统工程 物理 电气工程 操作系统 统计 热力学 数学
作者
Hongqian Wei,Nan Zhang,Jun Liang,Qiang Ai,Wenqiang Zhao,Tianyi Huang,Youtong Zhang
出处
期刊:Energy [Elsevier]
卷期号:238: 121725-121725 被引量:7
标识
DOI:10.1016/j.energy.2021.121725
摘要

Distributed drive electric vehicles are regarded as a broadly promising transportation tool owing to their convenience and maneuverability. However, reasonable and efficient allocation of torque demand to four wheels is a challenging task. In this paper, a deep reinforcement learning-based torque distribution strategy is proposed to guarantee the active safety and energy conservation. The torque distribution task is explicitly formulated as a Markov decision process, in which the vehicle dynamic characteristics can be approximated. The actor-critic networks are utilized to approximate the action value and policy functions for a better control effect. To guarantee continuous torque output and further stabilize the learning process, a twin delayed deep deterministic policy gradient algorithm is deployed. The motor efficiency is incorporated into the cumulative reward to reduce the energy consumption. The results of double lane change demonstrate that the proposed strategy results in better handling stability performance. In addition, it can improve the vehicle transient response and eliminate the static deviation in the step steering maneuver test. For typical steering maneuvers, the proposed direct torque distribution strategy significantly improves the average motor efficiency and reduces the energy loss by 5.25%–10.51%. Finally, a hardware-in-loop experiment was implemented to validate the real-time executability of the proposed torque distribution strategy. This study provides a foundation for the practical application of intelligent safety control algorithms in future vehicles. • 1-An intelligent torque distribution strategy for DDEVs is proposed. • 2-Vehicle active safety and energy-saving performance are considered. • 3-Twin delayed deep deterministic policy gradient algorithm is deployed for continuous torque output. • 4-Numerical test and hardware experiment validates its handling stability and energy conservation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
hhw完成签到,获得积分10
1秒前
1秒前
1秒前
suan发布了新的文献求助20
2秒前
满锅发布了新的文献求助10
4秒前
啊泉完成签到,获得积分10
4秒前
4秒前
jjaigll12完成签到 ,获得积分10
5秒前
6秒前
芳华如梦发布了新的文献求助30
8秒前
NexusExplorer应助忆韶采纳,获得10
8秒前
托丽莲睡拿完成签到,获得积分10
8秒前
毛豆应助狗熊岭在逃翠花采纳,获得10
9秒前
毛豆应助狗熊岭在逃翠花采纳,获得10
9秒前
9秒前
在水一方应助目土土采纳,获得10
9秒前
9秒前
9秒前
Raymond完成签到,获得积分10
10秒前
10秒前
cocolu应助lsw采纳,获得10
11秒前
慕青应助jeff采纳,获得10
11秒前
酶没美镁完成签到,获得积分10
11秒前
Trinity发布了新的文献求助10
12秒前
小鹿斑比发布了新的文献求助10
15秒前
15秒前
郭笑发布了新的文献求助10
16秒前
VDC应助Stitch采纳,获得30
16秒前
烟花应助科研通管家采纳,获得10
16秒前
RC_Wang应助科研通管家采纳,获得10
16秒前
Solitude_Z完成签到,获得积分10
16秒前
传奇3应助科研通管家采纳,获得10
16秒前
模糊中正应助科研通管家采纳,获得50
16秒前
yao应助科研通管家采纳,获得30
16秒前
RC_Wang应助科研通管家采纳,获得10
16秒前
Lilith完成签到,获得积分10
16秒前
17秒前
酷波er应助wt采纳,获得10
17秒前
高分求助中
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
Development and Industrialization of Stereoregular Polynorbornenes 500
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3418878
求助须知:如何正确求助?哪些是违规求助? 3020285
关于积分的说明 8891751
捐赠科研通 2707695
什么是DOI,文献DOI怎么找? 1484940
科研通“疑难数据库(出版商)”最低求助积分说明 686261
邀请新用户注册赠送积分活动 681414