Deep reinforcement learning based direct torque control strategy for distributed drive electric vehicles considering active safety and energy saving performance

强化学习 扭矩 控制理论(社会学) 计算机科学 过程(计算) 能源消耗 高效能源利用 任务(项目管理) 工程类 理论(学习稳定性) 能量(信号处理) 瞬态(计算机编程) 马尔可夫决策过程 控制工程 汽车工程 控制(管理) 马尔可夫过程 人工智能 系统工程 物理 机器学习 电气工程 操作系统 统计 热力学 数学
作者
Hongqian Wei,Nan Zhang,Jun Liang,Qiang Ai,Wenqiang Zhao,Tianyi Huang,Youtong Zhang
出处
期刊:Energy [Elsevier]
卷期号:238: 121725-121725 被引量:68
标识
DOI:10.1016/j.energy.2021.121725
摘要

Distributed drive electric vehicles are regarded as a broadly promising transportation tool owing to their convenience and maneuverability. However, reasonable and efficient allocation of torque demand to four wheels is a challenging task. In this paper, a deep reinforcement learning-based torque distribution strategy is proposed to guarantee the active safety and energy conservation. The torque distribution task is explicitly formulated as a Markov decision process, in which the vehicle dynamic characteristics can be approximated. The actor-critic networks are utilized to approximate the action value and policy functions for a better control effect. To guarantee continuous torque output and further stabilize the learning process, a twin delayed deep deterministic policy gradient algorithm is deployed. The motor efficiency is incorporated into the cumulative reward to reduce the energy consumption. The results of double lane change demonstrate that the proposed strategy results in better handling stability performance. In addition, it can improve the vehicle transient response and eliminate the static deviation in the step steering maneuver test. For typical steering maneuvers, the proposed direct torque distribution strategy significantly improves the average motor efficiency and reduces the energy loss by 5.25%–10.51%. Finally, a hardware-in-loop experiment was implemented to validate the real-time executability of the proposed torque distribution strategy. This study provides a foundation for the practical application of intelligent safety control algorithms in future vehicles. • 1-An intelligent torque distribution strategy for DDEVs is proposed. • 2-Vehicle active safety and energy-saving performance are considered. • 3-Twin delayed deep deterministic policy gradient algorithm is deployed for continuous torque output. • 4-Numerical test and hardware experiment validates its handling stability and energy conservation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温婉的香氛完成签到 ,获得积分10
刚刚
esdese发布了新的文献求助10
5秒前
超越俗尘完成签到,获得积分10
5秒前
明时完成签到,获得积分10
6秒前
CMUSK完成签到,获得积分10
8秒前
小核桃完成签到 ,获得积分10
11秒前
勤恳的嚓茶完成签到,获得积分10
11秒前
13秒前
Freddy完成签到 ,获得积分10
13秒前
LIKUN完成签到,获得积分10
13秒前
BinSir完成签到 ,获得积分10
13秒前
jkaaa完成签到,获得积分10
15秒前
Tin完成签到,获得积分10
18秒前
fawr完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
22秒前
今后应助奥里给医学生采纳,获得10
23秒前
魔幻的妖丽完成签到 ,获得积分0
24秒前
shuan完成签到,获得积分10
28秒前
吴晨曦完成签到,获得积分10
29秒前
量子星尘发布了新的文献求助10
32秒前
落叶完成签到 ,获得积分0
33秒前
研友_Zrlk7L完成签到,获得积分10
34秒前
丽莫莫完成签到,获得积分10
39秒前
丁丁发布了新的文献求助10
39秒前
安静严青完成签到 ,获得积分10
43秒前
量子星尘发布了新的文献求助10
46秒前
科科通通完成签到,获得积分10
46秒前
量子星尘发布了新的文献求助10
47秒前
48秒前
大猫不吃鱼完成签到,获得积分10
48秒前
49秒前
成就大白菜真实的钥匙完成签到 ,获得积分10
51秒前
草莓熊1215完成签到 ,获得积分10
52秒前
江湖完成签到,获得积分10
55秒前
东日完成签到,获得积分10
57秒前
sunnyqqz完成签到,获得积分10
58秒前
刚子完成签到 ,获得积分10
59秒前
葡紫明完成签到 ,获得积分10
59秒前
岁月如歌完成签到 ,获得积分0
1分钟前
排骨年糕完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671581
求助须知:如何正确求助?哪些是违规求助? 4920068
关于积分的说明 15135054
捐赠科研通 4830410
什么是DOI,文献DOI怎么找? 2587061
邀请新用户注册赠送积分活动 1540682
关于科研通互助平台的介绍 1498986