Deep reinforcement learning based direct torque control strategy for distributed drive electric vehicles considering active safety and energy saving performance

强化学习 扭矩 控制理论(社会学) 计算机科学 过程(计算) 能源消耗 高效能源利用 任务(项目管理) 工程类 能量(信号处理) 马尔可夫决策过程 控制工程 汽车工程 控制(管理) 马尔可夫过程 人工智能 系统工程 物理 电气工程 操作系统 统计 热力学 数学
作者
Hongqian Wei,Nan Zhang,Jun Liang,Qiang Ai,Wenqiang Zhao,Tianyi Huang,Youtong Zhang
出处
期刊:Energy [Elsevier BV]
卷期号:238: 121725-121725 被引量:7
标识
DOI:10.1016/j.energy.2021.121725
摘要

Distributed drive electric vehicles are regarded as a broadly promising transportation tool owing to their convenience and maneuverability. However, reasonable and efficient allocation of torque demand to four wheels is a challenging task. In this paper, a deep reinforcement learning-based torque distribution strategy is proposed to guarantee the active safety and energy conservation. The torque distribution task is explicitly formulated as a Markov decision process, in which the vehicle dynamic characteristics can be approximated. The actor-critic networks are utilized to approximate the action value and policy functions for a better control effect. To guarantee continuous torque output and further stabilize the learning process, a twin delayed deep deterministic policy gradient algorithm is deployed. The motor efficiency is incorporated into the cumulative reward to reduce the energy consumption. The results of double lane change demonstrate that the proposed strategy results in better handling stability performance. In addition, it can improve the vehicle transient response and eliminate the static deviation in the step steering maneuver test. For typical steering maneuvers, the proposed direct torque distribution strategy significantly improves the average motor efficiency and reduces the energy loss by 5.25%–10.51%. Finally, a hardware-in-loop experiment was implemented to validate the real-time executability of the proposed torque distribution strategy. This study provides a foundation for the practical application of intelligent safety control algorithms in future vehicles. • 1-An intelligent torque distribution strategy for DDEVs is proposed. • 2-Vehicle active safety and energy-saving performance are considered. • 3-Twin delayed deep deterministic policy gradient algorithm is deployed for continuous torque output. • 4-Numerical test and hardware experiment validates its handling stability and energy conservation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伶俐安萱完成签到,获得积分10
刚刚
Li完成签到,获得积分10
1秒前
ddy完成签到,获得积分10
1秒前
此卷12138完成签到,获得积分20
1秒前
1秒前
谨慎初曼发布了新的文献求助10
1秒前
heyihao应助chen采纳,获得10
2秒前
JialeMa完成签到,获得积分10
2秒前
2秒前
上官若男应助胡楠采纳,获得10
4秒前
拾年完成签到,获得积分10
4秒前
4秒前
4秒前
舒舒完成签到,获得积分10
4秒前
5秒前
6秒前
tree完成签到,获得积分10
6秒前
ytong发布了新的文献求助10
6秒前
wanci应助笨笨熊采纳,获得10
7秒前
feifei发布了新的文献求助10
7秒前
Hello应助wy1693207859采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
QUA应助科研通管家采纳,获得10
8秒前
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
8秒前
科研通AI2S应助科研通管家采纳,获得20
8秒前
干净以珊发布了新的文献求助10
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
环游世界完成签到 ,获得积分10
8秒前
银杏完成签到 ,获得积分10
8秒前
期刊应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
mxmx完成签到,获得积分10
9秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979289
求助须知:如何正确求助?哪些是违规求助? 3523220
关于积分的说明 11216715
捐赠科研通 3260668
什么是DOI,文献DOI怎么找? 1800176
邀请新用户注册赠送积分活动 878854
科研通“疑难数据库(出版商)”最低求助积分说明 807111