Risk factors for lymph node metastasis in rectal neuroendocrine tumors: A recursive partitioning analysis based on multicenter data

医学 逻辑回归 入射(几何) 置信区间 内科学 递归分区 淋巴结转移 单变量分析 多元分析 神经内分泌肿瘤 单变量 肿瘤科 转移 淋巴结 比例危险模型 多元统计 癌症 统计 物理 数学 光学
作者
Ye Wang,Yiyi Zhang,Hexin Lin,Meifang Xu,Xin Zhou,Jinfu Zhuang,Yuanfeng Yang,Bin Chen,Xing Liu,Guoxian Guan
出处
期刊:Journal of Surgical Oncology [Wiley]
卷期号:124 (7): 1098-1105 被引量:12
标识
DOI:10.1002/jso.26615
摘要

Abstract Background The well‐differentiated rectal neuroendocrine tumors (RNETs) can also have lymph node metastasis (LNM). Large multicenter data were reviewed to explore the risk factors for LNM in RNETs. Further, we developed a model to predict the risk of LNM in RNETs. Methods In total, 223 patients with RNETs from the Fujian Medical University Union Hospital, the First Affiliated Hospital of Fujian Medical University, and the First Affiliated Hospital of Xiamen University were retrospectively enrolled. Logistic regression analysis was performed to study the factors affecting LNM, and recursive partitioning analysis (RPA) was performed to stratify the risk of LNM. Results Among the 223 patients diagnosed with RNETs, the incidence of LNM was 10.8%. Univariate and multivariate regression analyses revealed that tumor size, World Health Organization (WHO) grade, and depth of tumor invasion were independent risk factors for LNM ( p < 0.05). The area under the curve was 0.948 (95% confidence interval: 0.890–1.000). Furthermore, the incidence of LNM in patients divided into low‐ and high‐risk groups according to RPA was 1.1% and 56.4%, respectively. Conclusion Compared with tumor size, the depth of tumor invasion and WHO grade are more important factors in predicting LNM. Then, we developed a model based on RPA to predict the risk of LNM in RNETs and identify patients who are suitable for local resection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
害羞映容完成签到,获得积分10
刚刚
科研通AI6应助小亮哈哈采纳,获得10
刚刚
刚刚
刚刚
所所应助liriyii采纳,获得10
刚刚
核糖体完成签到,获得积分20
1秒前
2秒前
Lloignyth完成签到,获得积分10
2秒前
赵苏程完成签到,获得积分10
2秒前
2秒前
2秒前
乐乐应助小张醒了采纳,获得10
3秒前
半凡完成签到,获得积分10
3秒前
小小666完成签到 ,获得积分10
3秒前
幽悠梦儿发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
Elin完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
平平无奇发布了新的文献求助10
5秒前
5秒前
青年才俊发布了新的文献求助10
5秒前
beijita完成签到,获得积分10
6秒前
星辰大海应助ZhangF采纳,获得10
6秒前
斯文败类应助Kyle采纳,获得10
7秒前
核糖体发布了新的文献求助10
7秒前
帅气蓝发布了新的文献求助10
7秒前
ZG发布了新的文献求助10
7秒前
jiwoong完成签到,获得积分10
8秒前
8秒前
田20202021完成签到,获得积分10
8秒前
史铖信完成签到,获得积分10
8秒前
我家有猫叫进宝完成签到,获得积分10
9秒前
10秒前
刘明生发布了新的文献求助10
10秒前
CipherSage应助木易雨山采纳,获得10
10秒前
浮游应助Yang_728采纳,获得10
11秒前
临澈完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097313
求助须知:如何正确求助?哪些是违规求助? 4309783
关于积分的说明 13428428
捐赠科研通 4137300
什么是DOI,文献DOI怎么找? 2266533
邀请新用户注册赠送积分活动 1269654
关于科研通互助平台的介绍 1205978