光热治疗
催化作用
甲烷化
材料科学
光热效应
纳米孔
甲烷
纳米技术
太阳能
化石燃料
化学工程
化学
有机化学
生物
生态学
工程类
作者
Mujin Cai,Zhiyi Wu,Li Zhao,Lu Wang,Wei Sun,Athanasios A. Tountas,Chaoran Li,Shenghua Wang,Kai Feng,Ao‐Bo Xu,Sanli Tang,Alexandra Tavasoli,Meiwen Peng,Wenxuan Liu,Amr S. Helmy,Le He,Geoffrey A. Ozin,Xiaohong Zhang
出处
期刊:Nature Energy
[Springer Nature]
日期:2021-07-26
卷期号:6 (8): 807-814
被引量:269
标识
DOI:10.1038/s41560-021-00867-w
摘要
Converting carbon dioxide photocatalytically into fuels using solar energy is an attractive route to move away from a reliance on fossil fuels. Photothermal CO2 catalysis is one approach to achieve this, but improved materials that can more efficiently harvest and use solar energy are needed. Here, we report a supra-photothermal catalyst architecture—inspired by the greenhouse effect—that boosts the performance of a catalyst for CO2 hydrogenation compared to traditional photothermal catalyst designs. The catalyst consists of a nanoporous-silica-encapsulated nickel nanocrystal (Ni@p-SiO2), which is active for methanation and reverse water–gas shift reactions. Under illumination, the local temperatures achieved by Ni@p-SiO2 exceed those of Ni-based catalysts without the SiO2 shell. We suggest that the heat insulation and infrared shielding effects of the SiO2 sheath confine the photothermal energy of the nickel core, enabling a supra-photothermal effect. Catalyst sintering and coking is also lessened in Ni@p-SiO2, which may be due to spatial confinement effects.
科研通智能强力驱动
Strongly Powered by AbleSci AI