Optimizing decisions for a dual-channel retailer with service level requirements and demand uncertainties: A Wasserstein metric-based distributionally robust optimization approach

数学优化 瓦瑟斯坦度量 计算机科学 频道(广播) 稳健优化 随机规划 强对偶性 拉格朗日松弛 二次规划 不确定数据
作者
Yue Sun,Ruozhen Qiu,Minghe Sun
出处
期刊:Computers & Operations Research [Elsevier]
卷期号:138: 105589-105589 被引量:5
标识
DOI:10.1016/j.cor.2021.105589
摘要

• Study prices, order quantities and delivery times of a dual-channel retailing problem. • Construct Wasserstein uncertainty set using historical data in a data-driven approach. • Develop a data-driven distributionally robust optimization model with service level requirement. • Transform the developed model into a tractable mixed integer quadratic programming model. • Perform numerical studies to validate the proposed model and the solution approach. This study explores a dual-channel management problem of a retailer selling multiple products to customers through a traditional retail channel and an online channel to maximize expected profit. The prices and order quantities of both the online and the retail channels and the delivery times of the online channel are the decision variables. The demand for each product and each channel is assumed to be random and dependent on the prices of both channels and on the online delivery time. In addition, to ensure an adequate performance, service level requirements are considered and are modeled as joint chance constraints. Wasserstein uncertainty sets using the Wasserstein metric for demand probability distributions centered at the empirical distributions on the observed demands from the historical data are constructed in a data-driven approach. Accordingly, a data-driven distributionally robust joint chance constrained model is developed based on the data-driven Wasserstein uncertainty sets. A conservative CVaR approximation is used for the distributionally robust joint chance constraints. Through mathematical manipulations, the developed model is transformed into a bilinear program, which can be approximated by a mixed integer quadratic programming model using piecewise affine relaxations of the bilinear terms and can be solved efficiently. Numerical experiments are performed to illustrate the effectiveness and practicality of the proposed data-driven distributionally robust optimization approach to deal with demand uncertainties. The effects of the key parameters such as delivery time sensitivity, price sensitivity and customer channel preference are analyzed and managerial insights are provided. The results show that the decisions obtained by the proposed approach are robust to hedge against demand uncertainties. The proposed model and solution approach can provide effective decision supports for retailers selling products through an online channel and a traditional retail channel without reliable demand distribution information. Furthermore, compared with the L 1 -norm and the L 2 -norm, the L ∞ -norm is verified to perform better when used in the Wasserstein metric for constructing the Wasserstein uncertainty sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
uuuuu关注了科研通微信公众号
2秒前
2秒前
2秒前
zp发布了新的文献求助10
2秒前
尉迟如音完成签到,获得积分10
3秒前
于芋菊给???的求助进行了留言
3秒前
3秒前
哈哈哈发布了新的文献求助10
4秒前
小鞠发布了新的文献求助10
5秒前
5秒前
6秒前
希特勒完成签到,获得积分10
6秒前
清脆愫完成签到 ,获得积分10
7秒前
细水长流完成签到,获得积分10
7秒前
洁净春天完成签到,获得积分10
7秒前
深情安青应助young采纳,获得10
8秒前
gigi发布了新的文献求助10
8秒前
薰硝壤应助薯条采纳,获得20
8秒前
缥缈凌萱发布了新的文献求助10
8秒前
ding应助Bing采纳,获得10
9秒前
丸子发布了新的文献求助10
9秒前
星辰大海应助嘻嘻嘻采纳,获得10
10秒前
韶冥茗发布了新的文献求助10
10秒前
10秒前
肖思羽发布了新的文献求助10
10秒前
SciGPT应助cheese采纳,获得10
11秒前
橘子橙完成签到 ,获得积分20
11秒前
12秒前
夏天再见完成签到,获得积分10
13秒前
13秒前
13秒前
15秒前
left666完成签到,获得积分10
16秒前
17秒前
17秒前
BSDL发布了新的文献求助10
17秒前
英俊的铭应助韶冥茗采纳,获得10
17秒前
彦希发布了新的文献求助10
17秒前
18秒前
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135818
求助须知:如何正确求助?哪些是违规求助? 2786651
关于积分的说明 7778773
捐赠科研通 2442821
什么是DOI,文献DOI怎么找? 1298711
科研通“疑难数据库(出版商)”最低求助积分说明 625212
版权声明 600866