Data-driven machine learning models for quick prediction of thermal stability properties of OLED materials

热稳定性 有机发光二极管 理论(学习稳定性) 计算机科学 机器学习 热的 材料科学 复合材料 工程类 热力学 物理 化学工程 图层(电子)
作者
Yanli Zhao,Caixia Fu,Lulu Fu,Ying-Dong Liu,Zhongyan Lu,Xunchi Pu
出处
期刊:Materials Today Chemistry [Elsevier]
卷期号:22: 100625-100625 被引量:15
标识
DOI:10.1016/j.mtchem.2021.100625
摘要

Organic light-emitting diode (OLED) materials have exhibited a wide range of applications. However, the further development and commercialization of OLEDs requires higher quality OLED materials, including materials with a high thermal stability. Thermal stability is associated with the glass transition temperature ( T g ) and decomposition temperature ( T d ), but experimental determinations of these two important properties generally involve a time-consuming and laborious process. Thus, the development of a quick and accurate prediction tool is highly desirable. Motivated by the challenge, we explored machine learning (ML) by constructing a new dataset with more than 1,000 samples collected from a wide range of literature, through which ensemble learning models were explored. Models trained with the LightGBM algorithm exhibited the best prediction performance, where the values of mean absolute error, root mean squared error, and R 2 were 17.15 K, 24.63 K, and 0.77 for T g prediction and 24.91 K, 33.88 K, and 0.78 for T d prediction. The prediction performance and the generalization of the ML models were further tested by two applications, which also exhibited satisfactory results. Experimental validation further demonstrated the reliability and the practical potential of the ML-based models. In order to extend the practical application of the ML-based models, an online prediction platform was constructed. This platform includes the optimal prediction models and all the thermal stability data under study, and it is freely available at http://www.oledtppxmpugroup.com . We expect that this platform will become a useful tool for experimental investigation of T g and T d , accelerating the design of OLED materials with desired properties. • The quick prediction of T g and T d of OLED materials by ML. • Experimental verification showed that the ML models screen high-thermal stability OLED materials. • An online prediction platform was constructed based on the optimal models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
chenbin完成签到,获得积分10
7秒前
小AB发布了新的文献求助10
8秒前
陈米花完成签到,获得积分10
12秒前
yyjl31完成签到,获得积分10
12秒前
Simon_chat完成签到,获得积分10
13秒前
吐司炸弹完成签到,获得积分10
13秒前
mayfly完成签到,获得积分10
13秒前
李健应助小AB采纳,获得10
28秒前
尹俊采完成签到,获得积分10
30秒前
摆渡人发布了新的文献求助10
38秒前
LI完成签到 ,获得积分10
38秒前
淞淞于我完成签到 ,获得积分10
49秒前
Hyacinth完成签到 ,获得积分10
1分钟前
陶瓷完成签到 ,获得积分10
1分钟前
Tonald Yang完成签到,获得积分20
1分钟前
跳跃的访琴完成签到 ,获得积分10
1分钟前
摆渡人发布了新的文献求助10
1分钟前
Skywings完成签到,获得积分10
1分钟前
冰留完成签到 ,获得积分10
1分钟前
allia完成签到 ,获得积分10
1分钟前
口布鲁完成签到,获得积分10
2分钟前
炎炎夏无声完成签到 ,获得积分10
2分钟前
小伊001完成签到,获得积分10
2分钟前
无奈的邪欢完成签到,获得积分10
2分钟前
宸浅完成签到 ,获得积分10
2分钟前
Singularity应助科研通管家采纳,获得10
2分钟前
physicalproblem完成签到,获得积分10
2分钟前
个性仙人掌完成签到 ,获得积分10
2分钟前
娇娇大王完成签到,获得积分10
2分钟前
平常从蓉应助摆渡人采纳,获得10
2分钟前
Linyi完成签到 ,获得积分10
3分钟前
zly完成签到 ,获得积分10
3分钟前
ycc完成签到,获得积分10
3分钟前
ZHANG完成签到 ,获得积分10
3分钟前
诸葛丞相完成签到 ,获得积分10
3分钟前
John发布了新的文献求助10
4分钟前
墨雨云烟完成签到 ,获得积分10
4分钟前
lihe198900完成签到 ,获得积分10
4分钟前
陈秋完成签到,获得积分10
4分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137039
求助须知:如何正确求助?哪些是违规求助? 2788014
关于积分的说明 7784284
捐赠科研通 2444088
什么是DOI,文献DOI怎么找? 1299724
科研通“疑难数据库(出版商)”最低求助积分说明 625522
版权声明 600999