Data-driven machine learning models for quick prediction of thermal stability properties of OLED materials

热稳定性 有机发光二极管 理论(学习稳定性) 计算机科学 机器学习 热的 材料科学 复合材料 工程类 热力学 物理 化学工程 图层(电子)
作者
Yanli Zhao,Chunmei Fu,Lulu Fu,Ying-Dong Liu,Zhipeng Lu,Xunchi Pu
出处
期刊:Materials Today Chemistry [Elsevier]
卷期号:22: 100625-100625 被引量:27
标识
DOI:10.1016/j.mtchem.2021.100625
摘要

Organic light-emitting-diode (OLED) materials have exhibited a wide range of applications.However, the further development and commercialization of OLEDs requires higher-quality OLED materials, including materials with a high thermal stability.Thermal stability is associated with the glass transition temperature (Tg) and decomposition temperature (Td), but experimental determinations of these two important properties genernally involve a time-consuming and laborious process.Thus, the development of a quick and accurate prediction tool is highly desirable.Motivated by the challenge, we explored machine learning (ML) by constructing a new dataset with more than one thousand samples collected from a wide range of literature, through which ensemble learning models were explored.Models trained with the LightGBM algorithm exhibited the best prediction performance, where the values of MAE, RMSE, and R 2 were 17.15 K, 24.63 K, and 0.77 for Tg prediction and 24.91 K, 33.88 K, and 0.78 for Td prediction.The prediction performance and the generalization of the machine learning models were further tested by out-of-sample data, which also exhibited satisfactory results.Experimental validation further demonstrated the reliability and the practical potential of the ML-based model.In order to extend the practical application of the ML-based models, an online prediction platform was constructed.This platform includes the optimal prediction models and all the thermal stability data under study, and it is freely available at http://oledtppxmpugroup.com.We expect that this platform will become a useful tool for experimental investigation of Tg and Td, accelerating the design of OLED materials with desired properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
刚刚
目目应助多不多乐采纳,获得10
1秒前
星辰大海应助11111采纳,获得10
1秒前
爱爱精神境界完成签到,获得积分10
1秒前
RayHey发布了新的文献求助10
2秒前
乌苏苏发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
小吴同志完成签到,获得积分10
2秒前
阿吟发布了新的文献求助10
2秒前
Febrine0502发布了新的文献求助10
2秒前
科研小白完成签到,获得积分10
3秒前
3秒前
cyndi发布了新的文献求助10
3秒前
亦犹未进发布了新的文献求助10
3秒前
Jared应助在远方采纳,获得10
3秒前
强健的苠完成签到 ,获得积分10
4秒前
Inga完成签到,获得积分10
4秒前
5秒前
小蘑菇应助拔丝香芋采纳,获得30
5秒前
5秒前
5秒前
6秒前
6秒前
一一完成签到,获得积分10
6秒前
完美的妙芹完成签到,获得积分10
7秒前
万能图书馆应助mjn404采纳,获得10
7秒前
7秒前
小杭76发布了新的文献求助10
7秒前
禹王神槊发布了新的文献求助10
8秒前
爱笑灵雁完成签到,获得积分10
8秒前
星月完成签到,获得积分10
9秒前
小两完成签到,获得积分10
9秒前
9秒前
dongdong发布了新的文献求助30
10秒前
科研通AI6应助小言采纳,获得30
10秒前
GHOMON完成签到,获得积分10
10秒前
小崔读研完成签到 ,获得积分10
10秒前
10秒前
zm发布了新的文献求助10
11秒前
Gaolongzhen发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629957
求助须知:如何正确求助?哪些是违规求助? 4721200
关于积分的说明 14971845
捐赠科研通 4787915
什么是DOI,文献DOI怎么找? 2556638
邀请新用户注册赠送积分活动 1517713
关于科研通互助平台的介绍 1478320