Data-driven machine learning models for quick prediction of thermal stability properties of OLED materials

热稳定性 有机发光二极管 理论(学习稳定性) 计算机科学 机器学习 热的 材料科学 复合材料 工程类 热力学 物理 化学工程 图层(电子)
作者
Yanli Zhao,Chunmei Fu,Lulu Fu,Ying-Dong Liu,Zhipeng Lu,Xunchi Pu
出处
期刊:Materials Today Chemistry [Elsevier BV]
卷期号:22: 100625-100625 被引量:20
标识
DOI:10.1016/j.mtchem.2021.100625
摘要

Organic light-emitting-diode (OLED) materials have exhibited a wide range of applications.However, the further development and commercialization of OLEDs requires higher-quality OLED materials, including materials with a high thermal stability.Thermal stability is associated with the glass transition temperature (Tg) and decomposition temperature (Td), but experimental determinations of these two important properties genernally involve a time-consuming and laborious process.Thus, the development of a quick and accurate prediction tool is highly desirable.Motivated by the challenge, we explored machine learning (ML) by constructing a new dataset with more than one thousand samples collected from a wide range of literature, through which ensemble learning models were explored.Models trained with the LightGBM algorithm exhibited the best prediction performance, where the values of MAE, RMSE, and R 2 were 17.15 K, 24.63 K, and 0.77 for Tg prediction and 24.91 K, 33.88 K, and 0.78 for Td prediction.The prediction performance and the generalization of the machine learning models were further tested by out-of-sample data, which also exhibited satisfactory results.Experimental validation further demonstrated the reliability and the practical potential of the ML-based model.In order to extend the practical application of the ML-based models, an online prediction platform was constructed.This platform includes the optimal prediction models and all the thermal stability data under study, and it is freely available at http://oledtppxmpugroup.com.We expect that this platform will become a useful tool for experimental investigation of Tg and Td, accelerating the design of OLED materials with desired properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
exquisite完成签到,获得积分10
刚刚
刚刚
iNk应助学术羊采纳,获得20
刚刚
刚刚
埃特纳氏完成签到 ,获得积分10
1秒前
共享精神应助小草采纳,获得10
1秒前
阿月完成签到,获得积分10
2秒前
小麦子儿完成签到 ,获得积分10
4秒前
七七发布了新的文献求助10
5秒前
小玉发布了新的文献求助10
6秒前
超靓诺言发布了新的文献求助10
6秒前
健忘的梦旋完成签到,获得积分20
6秒前
7秒前
8秒前
所所应助小眼儿采纳,获得10
9秒前
英姑应助佘楽采纳,获得10
9秒前
胖胖完成签到 ,获得积分0
10秒前
kitty完成签到 ,获得积分10
10秒前
10秒前
顾矜应助超靓诺言采纳,获得10
11秒前
一汪发布了新的文献求助10
12秒前
小王同学完成签到,获得积分10
12秒前
乐乐应助安诺采纳,获得10
12秒前
15秒前
小玉完成签到,获得积分20
15秒前
树树完成签到,获得积分10
16秒前
yar应助林橙采纳,获得10
16秒前
万能图书馆应助sunshine采纳,获得10
16秒前
17秒前
18秒前
东木应助稳重的秋天采纳,获得20
18秒前
绵绵完成签到,获得积分10
18秒前
18秒前
谨慎鹏涛完成签到 ,获得积分10
19秒前
曹官子完成签到 ,获得积分10
19秒前
20秒前
完美世界应助mzone采纳,获得10
20秒前
桐桐应助欧阳正义采纳,获得10
21秒前
李健应助xxxllllll采纳,获得10
22秒前
小眼儿发布了新的文献求助10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966777
求助须知:如何正确求助?哪些是违规求助? 3512284
关于积分的说明 11162496
捐赠科研通 3247199
什么是DOI,文献DOI怎么找? 1793690
邀请新用户注册赠送积分活动 874588
科研通“疑难数据库(出版商)”最低求助积分说明 804432