A chromosome‐scale genome assembly and annotation of the spring orchid (Cymbidium goeringii)

生物 基因组 基因 顺序装配 细菌人工染色体 基因组进化 基因组大小 进化生物学 遗传学 染色体 计算生物学 转录组 基因表达
作者
Oksung Chung,Jung‐Eun Kim,Dan Bolser,Hak‐Min Kim,Je Hoon Jun,Jae‐Pil Choi,Hyun‐Do Jang,Yun Sung Cho,Jong Bhak,Myounghai Kwak
出处
期刊:Molecular Ecology Resources [Wiley]
卷期号:22 (3): 1168-1177 被引量:12
标识
DOI:10.1111/1755-0998.13537
摘要

Cymbidium goeringii, commonly known as the spring orchid, has long been favoured for horticultural purposes in Asian countries. It is a popular orchid with much demand for improvement and development for its valuable varieties. Until now, its reference genome has not been published despite its popularity and conservation efforts. Here, we report the de novo assembly of the C. goeringii genome, which is the largest among the orchids published to date, using a strategy that combines short- and long-read sequencing and chromosome conformation capture (Hi-C) information. The total length of all scaffolds is 3.99 Gb, with an N50 scaffold size of 178.2 Mb. A total of 29,556 protein-coding genes were annotated and 3.55 Gb (88.87% of genome) repetitive sequences were identified. We constructed pseudomolecular chromosomes using Hi-C, incorporating 89.4% of the scaffolds in 20 chromosomes. We identified 220 expanded and 106 contracted genes families in C. goeringii after divergence from its close relative. We also identified new gene families, resistance gene analogues and changes within the MADS-box genes, which control a diverse set of developmental processes during orchid evolution. Our high quality chromosomal-level assembly of C. goeringii can provide a platform for elucidating the genomic evolution of orchids, mining functional genes for agronomic traits and for developing molecular markers for accelerated breeding as well as accelerating conservation efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
一路生花发布了新的文献求助10
1秒前
花成花发布了新的文献求助10
1秒前
3秒前
清秀白梦完成签到 ,获得积分10
3秒前
彩色德天发布了新的文献求助20
3秒前
踏雪泥完成签到,获得积分10
3秒前
Lenacici发布了新的文献求助10
3秒前
斯文败类应助Lxx采纳,获得10
4秒前
4秒前
甜美无剑发布了新的文献求助10
4秒前
脑洞疼应助yj采纳,获得10
4秒前
yyj发布了新的文献求助10
5秒前
5秒前
zhenzhen发布了新的文献求助10
6秒前
AAA当心眼睛完成签到,获得积分10
6秒前
wanci应助红尘采纳,获得10
6秒前
灵巧的凝云应助book思议采纳,获得10
6秒前
在水一方应助一粟采纳,获得10
6秒前
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
陈木子完成签到,获得积分10
7秒前
7秒前
8秒前
丰富绿蝶完成签到,获得积分20
9秒前
深夜看文献的小刘完成签到,获得积分10
9秒前
9秒前
9秒前
科研通AI2S应助小马采纳,获得10
9秒前
雾里看花完成签到,获得积分10
10秒前
semigreen发布了新的文献求助10
10秒前
Hohowinnie发布了新的文献求助10
11秒前
打打应助noobmaster采纳,获得10
11秒前
yiren发布了新的文献求助10
12秒前
fillippo99应助Micheal采纳,获得150
12秒前
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309340
求助须知:如何正确求助?哪些是违规求助? 2942666
关于积分的说明 8510349
捐赠科研通 2617829
什么是DOI,文献DOI怎么找? 1430504
科研通“疑难数据库(出版商)”最低求助积分说明 664123
邀请新用户注册赠送积分活动 649319