Identification of Non-Invasive Exercise Thresholds: Methods, Strategies, and an Online App

呼吸补偿 医学 运动生理学 运动处方 资源(消歧) 计算机科学 乳酸阈 通气阈值 运动医学 鉴定(生物学) 血乳酸 物理疗法 无氧运动 最大VO2 内科学 心率 血压 生物 植物 计算机网络
作者
Daniel A. Keir,Danilo Iannetta,Felipe Mattioni Maturana,John M. Kowalchuk,Juan M. Murias
出处
期刊:Sports Medicine [Springer Science+Business Media]
卷期号:52 (2): 237-255 被引量:89
标识
DOI:10.1007/s40279-021-01581-z
摘要

During incremental exercise, two thresholds may be identified from standard gas exchange and ventilatory measurements. The first signifies the onset of blood lactate accumulation (the lactate threshold, LT) and the second the onset of metabolic acidosis (the respiratory compensation point, RCP). The ability to explain why these thresholds occur and how they are identified, non-invasively, from pulmonary gas exchange and ventilatory variables is fundamental to the field of exercise physiology and requisite to the understanding of core concepts including exercise intensity, assessment, prescription, and performance. This review is intended as a unique and comprehensive theoretical and practical resource for instructors, clinicians, researchers, lab technicians, and students at both undergraduate and graduate levels to facilitate the teaching, comprehension, and proper non-invasive identification of exercise thresholds. Specific objectives are to: (1) explain the underlying physiology that produces the LT and RCP; (2) introduce the classic non-invasive measurements by which these thresholds are identified by connecting variable profiles to underlying physiological behaviour; (3) discuss common issues that can obscure threshold detection and strategies to identify and mitigate these challenges; and (4) introduce an online resource to facilitate learning and standard practices. Specific examples of exercise gas exchange and ventilatory data are provided throughout to illustrate these concepts and a novel online application tool designed specifically to identify the estimated LT (θLT) and RCP is introduced. This application is a unique platform for learners to practice skills on real exercise data and for anyone to analyze incremental exercise data for the purpose of identifying θLT and RCP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助谢育龙采纳,获得10
1秒前
1秒前
Eazin完成签到,获得积分10
2秒前
科研小白发布了新的文献求助10
3秒前
云鲲完成签到,获得积分10
4秒前
动听若灵完成签到,获得积分10
5秒前
华仔应助lili采纳,获得10
5秒前
11111发布了新的文献求助10
5秒前
领导范儿应助明明采纳,获得10
5秒前
zhukeqinag完成签到,获得积分10
6秒前
在水一方应助stinkyfish采纳,获得10
8秒前
默读完成签到,获得积分10
9秒前
9秒前
科研通AI5应助yaya采纳,获得10
9秒前
CRANE完成签到 ,获得积分10
10秒前
10秒前
10秒前
希望天下0贩的0应助Panda采纳,获得10
12秒前
Yan完成签到,获得积分10
12秒前
呵呵发布了新的文献求助10
13秒前
安殿夏关注了科研通微信公众号
14秒前
14秒前
静汉发布了新的文献求助10
15秒前
英姑应助犹豫的若采纳,获得10
15秒前
15秒前
随机发布了新的文献求助10
15秒前
在水一方应助现实的南烟采纳,获得10
16秒前
16秒前
棒棒糖完成签到,获得积分20
17秒前
张凤发布了新的文献求助10
17秒前
18秒前
tina发布了新的文献求助10
18秒前
默读发布了新的文献求助10
21秒前
21秒前
22秒前
22秒前
妮妮爱smile完成签到,获得积分10
23秒前
今后应助静汉采纳,获得10
24秒前
lrx完成签到,获得积分20
24秒前
科研通AI5应助tina采纳,获得10
27秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741086
求助须知:如何正确求助?哪些是违规求助? 3283852
关于积分的说明 10037232
捐赠科研通 3000684
什么是DOI,文献DOI怎么找? 1646647
邀请新用户注册赠送积分活动 783858
科研通“疑难数据库(出版商)”最低求助积分说明 750442