Identification of Non-Invasive Exercise Thresholds: Methods, Strategies, and an Online App

呼吸补偿 医学 运动生理学 运动处方 资源(消歧) 计算机科学 乳酸阈 通气阈值 运动医学 鉴定(生物学) 血乳酸 物理疗法 无氧运动 最大VO2 内科学 心率 血压 生物 植物 计算机网络
作者
Daniel A. Keir,Danilo Iannetta,Felipe Mattioni Maturana,John M. Kowalchuk,Juan M. Murias
出处
期刊:Sports Medicine [Springer Science+Business Media]
卷期号:52 (2): 237-255 被引量:89
标识
DOI:10.1007/s40279-021-01581-z
摘要

During incremental exercise, two thresholds may be identified from standard gas exchange and ventilatory measurements. The first signifies the onset of blood lactate accumulation (the lactate threshold, LT) and the second the onset of metabolic acidosis (the respiratory compensation point, RCP). The ability to explain why these thresholds occur and how they are identified, non-invasively, from pulmonary gas exchange and ventilatory variables is fundamental to the field of exercise physiology and requisite to the understanding of core concepts including exercise intensity, assessment, prescription, and performance. This review is intended as a unique and comprehensive theoretical and practical resource for instructors, clinicians, researchers, lab technicians, and students at both undergraduate and graduate levels to facilitate the teaching, comprehension, and proper non-invasive identification of exercise thresholds. Specific objectives are to: (1) explain the underlying physiology that produces the LT and RCP; (2) introduce the classic non-invasive measurements by which these thresholds are identified by connecting variable profiles to underlying physiological behaviour; (3) discuss common issues that can obscure threshold detection and strategies to identify and mitigate these challenges; and (4) introduce an online resource to facilitate learning and standard practices. Specific examples of exercise gas exchange and ventilatory data are provided throughout to illustrate these concepts and a novel online application tool designed specifically to identify the estimated LT (θLT) and RCP is introduced. This application is a unique platform for learners to practice skills on real exercise data and for anyone to analyze incremental exercise data for the purpose of identifying θLT and RCP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
雪白的山雁完成签到 ,获得积分10
1秒前
耶耶耶完成签到 ,获得积分10
3秒前
liberation完成签到 ,获得积分0
4秒前
fiell发布了新的文献求助10
6秒前
6秒前
小大巫完成签到,获得积分10
6秒前
as完成签到,获得积分20
6秒前
xzy998应助默默的巧荷采纳,获得10
6秒前
7秒前
兴奋曼凡完成签到,获得积分10
7秒前
8秒前
drzz完成签到,获得积分10
10秒前
岂有此李完成签到,获得积分10
10秒前
坚强的依凝完成签到,获得积分10
11秒前
12秒前
昏昏完成签到 ,获得积分10
12秒前
不过尔尔完成签到 ,获得积分10
13秒前
刘宏完成签到,获得积分10
14秒前
可以完成签到,获得积分10
14秒前
15秒前
坚强枫完成签到,获得积分10
16秒前
默默的巧荷完成签到,获得积分10
17秒前
一叶知秋完成签到,获得积分10
18秒前
小杰瑞完成签到,获得积分20
18秒前
希望天下0贩的0应助可以采纳,获得10
18秒前
白色梨花发布了新的文献求助10
18秒前
19秒前
包容柜子发布了新的文献求助10
19秒前
fiell完成签到,获得积分10
20秒前
眼睛大的擎苍给眼睛大的擎苍的求助进行了留言
20秒前
呆萌滑板完成签到 ,获得积分10
21秒前
21秒前
瑶瑶完成签到,获得积分10
22秒前
小猪找库里完成签到,获得积分10
23秒前
zhuzhen007完成签到 ,获得积分10
24秒前
淡定的秀发完成签到,获得积分10
24秒前
xuan完成签到,获得积分10
26秒前
龙华之士发布了新的文献求助10
26秒前
mkb发布了新的文献求助10
26秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038446
求助须知:如何正确求助?哪些是违规求助? 3576149
关于积分的说明 11374627
捐赠科研通 3305875
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892680
科研通“疑难数据库(出版商)”最低求助积分说明 815048