Low-SNR Recognition of UAV-to-Ground Targets Based on Micro-Doppler Signatures Using Deep Convolutional Denoising Encoders and Deep Residual Learning

计算机科学 卷积神经网络 人工智能 稳健性(进化) 多普勒效应 深度学习 模式识别(心理学) 多普勒雷达 残余物 计算机视觉 降噪 算法 特征提取 雷达 电信 基因 生物化学 物理 化学 天文
作者
Lingzhi Zhu,Shuning Zhang,Kuiyu Chen,Si Chen,Xun Wang,Dongxu Wei,Huichang Zhao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-13 被引量:13
标识
DOI:10.1109/tgrs.2021.3123109
摘要

The rapid development of flight control technology has made unmanned aerial vehicles (UAVs) widely used in high-precision strikes on the battlefield. The premise of this is to achieve accurate target recognition using UAV-based radars. Aiming at three typical ground targets, including pedestrians, wheeled vehicles, and tracked vehicles, the micro-Doppler modulation caused by the random vibration of the UAV is analyzed in this article for the first time. To improve the recognition accuracy under low signal-to-noise ratios (SNRs), Doppler signals are transformed into time–frequency images, and a deep convolutional denoising encoder (DCDE) is designed to effectively remove the noise without suppressing micro-Doppler characteristics. To avoid the complicated micro-Doppler feature extraction, deep residual learning that can reduce the burden of network training and gain higher learning efficiency compared with traditional deep convolutional neural networks (DCNNs) is adopted. Recognition results under various occasions using denoised micro-Doppler images and designed residual learning network indicate that the proposed method has higher precision and better robustness than current methods. Even when the SNR is only −16 dB, the overall recognition accuracy still exceeds 90%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bloodgod12345完成签到,获得积分10
刚刚
刚刚
刚刚
刚刚
夜神月发布了新的文献求助10
1秒前
1秒前
陶一二发布了新的文献求助10
2秒前
ChenYX发布了新的文献求助10
2秒前
Jane发布了新的文献求助10
2秒前
睡觉做大梦完成签到,获得积分10
2秒前
852应助yaoqing采纳,获得10
2秒前
mo发布了新的文献求助10
3秒前
3秒前
无花果应助紫薯球采纳,获得10
3秒前
3秒前
3秒前
lulu08发布了新的文献求助10
4秒前
zzf完成签到,获得积分10
4秒前
阿ccc发布了新的文献求助10
4秒前
陈平安完成签到,获得积分10
4秒前
曾经的代曼完成签到 ,获得积分10
5秒前
微笑芯发布了新的文献求助10
5秒前
Emper发布了新的文献求助10
5秒前
YuGe发布了新的文献求助10
5秒前
朴素的山蝶完成签到 ,获得积分10
6秒前
科目三应助我很懵逼采纳,获得10
6秒前
6秒前
6秒前
hunter发布了新的文献求助10
7秒前
NexusExplorer应助xx采纳,获得10
7秒前
香蕉觅云应助小y采纳,获得10
7秒前
7秒前
9秒前
lfydhk发布了新的文献求助10
9秒前
9秒前
李钊沆完成签到,获得积分10
9秒前
10秒前
英姑应助荔枝采纳,获得10
10秒前
沉默的倔驴应助迟解采纳,获得10
11秒前
齐qqqqqqq完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5592728
求助须知:如何正确求助?哪些是违规求助? 4678657
关于积分的说明 14806176
捐赠科研通 4642203
什么是DOI,文献DOI怎么找? 2534092
邀请新用户注册赠送积分活动 1502140
关于科研通互助平台的介绍 1469267