亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Low-SNR Recognition of UAV-to-Ground Targets Based on Micro-Doppler Signatures Using Deep Convolutional Denoising Encoders and Deep Residual Learning

计算机科学 卷积神经网络 人工智能 稳健性(进化) 多普勒效应 深度学习 模式识别(心理学) 多普勒雷达 残余物 计算机视觉 降噪 算法 特征提取 雷达 电信 基因 生物化学 物理 化学 天文
作者
Lingzhi Zhu,Shuning Zhang,Kuiyu Chen,Si Chen,Xun Wang,Dongxu Wei,Huichang Zhao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-13 被引量:13
标识
DOI:10.1109/tgrs.2021.3123109
摘要

The rapid development of flight control technology has made unmanned aerial vehicles (UAVs) widely used in high-precision strikes on the battlefield. The premise of this is to achieve accurate target recognition using UAV-based radars. Aiming at three typical ground targets, including pedestrians, wheeled vehicles, and tracked vehicles, the micro-Doppler modulation caused by the random vibration of the UAV is analyzed in this article for the first time. To improve the recognition accuracy under low signal-to-noise ratios (SNRs), Doppler signals are transformed into time–frequency images, and a deep convolutional denoising encoder (DCDE) is designed to effectively remove the noise without suppressing micro-Doppler characteristics. To avoid the complicated micro-Doppler feature extraction, deep residual learning that can reduce the burden of network training and gain higher learning efficiency compared with traditional deep convolutional neural networks (DCNNs) is adopted. Recognition results under various occasions using denoised micro-Doppler images and designed residual learning network indicate that the proposed method has higher precision and better robustness than current methods. Even when the SNR is only −16 dB, the overall recognition accuracy still exceeds 90%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
wmx发布了新的文献求助10
6秒前
11秒前
FashionBoy应助无情的琳采纳,获得10
14秒前
16秒前
16秒前
badadaa完成签到 ,获得积分10
21秒前
小李发布了新的文献求助10
23秒前
24秒前
无情的琳发布了新的文献求助10
29秒前
34秒前
小李驳回了华仔应助
54秒前
57秒前
Criminology34应助科研通管家采纳,获得10
58秒前
Criminology34应助科研通管家采纳,获得10
58秒前
58秒前
Criminology34应助科研通管家采纳,获得10
58秒前
科目三应助科研通管家采纳,获得10
58秒前
嘟嘟嘟嘟发布了新的文献求助10
1分钟前
1分钟前
bai完成签到 ,获得积分10
1分钟前
优美香露发布了新的文献求助10
1分钟前
2分钟前
美满尔蓝完成签到,获得积分10
2分钟前
答辩完成签到 ,获得积分10
2分钟前
2分钟前
AXX041795发布了新的文献求助10
2分钟前
小鸟芋圆露露完成签到 ,获得积分0
2分钟前
maprang完成签到,获得积分10
2分钟前
美琦发布了新的文献求助10
2分钟前
情怀应助大艺术家吞吞采纳,获得10
2分钟前
小李要上岸完成签到,获得积分10
2分钟前
howgoods完成签到 ,获得积分10
2分钟前
2分钟前
小李发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
大模型应助AXX041795采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723793
求助须知:如何正确求助?哪些是违规求助? 5281025
关于积分的说明 15299145
捐赠科研通 4872071
什么是DOI,文献DOI怎么找? 2616558
邀请新用户注册赠送积分活动 1566354
关于科研通互助平台的介绍 1523235