Low-SNR Recognition of UAV-to-Ground Targets Based on Micro-Doppler Signatures Using Deep Convolutional Denoising Encoders and Deep Residual Learning

计算机科学 卷积神经网络 人工智能 稳健性(进化) 多普勒效应 深度学习 模式识别(心理学) 多普勒雷达 残余物 计算机视觉 降噪 算法 特征提取 雷达 电信 生物化学 化学 物理 天文 基因
作者
Lingzhi Zhu,Shuning Zhang,Kuiyu Chen,Si Chen,Xun Wang,Dongxu Wei,Huichang Zhao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-13 被引量:13
标识
DOI:10.1109/tgrs.2021.3123109
摘要

The rapid development of flight control technology has made unmanned aerial vehicles (UAVs) widely used in high-precision strikes on the battlefield. The premise of this is to achieve accurate target recognition using UAV-based radars. Aiming at three typical ground targets, including pedestrians, wheeled vehicles, and tracked vehicles, the micro-Doppler modulation caused by the random vibration of the UAV is analyzed in this article for the first time. To improve the recognition accuracy under low signal-to-noise ratios (SNRs), Doppler signals are transformed into time–frequency images, and a deep convolutional denoising encoder (DCDE) is designed to effectively remove the noise without suppressing micro-Doppler characteristics. To avoid the complicated micro-Doppler feature extraction, deep residual learning that can reduce the burden of network training and gain higher learning efficiency compared with traditional deep convolutional neural networks (DCNNs) is adopted. Recognition results under various occasions using denoised micro-Doppler images and designed residual learning network indicate that the proposed method has higher precision and better robustness than current methods. Even when the SNR is only −16 dB, the overall recognition accuracy still exceeds 90%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助Volta_zz采纳,获得10
刚刚
刚刚
时间丶完成签到,获得积分10
1秒前
皮卡丘发布了新的文献求助10
1秒前
irisjlj发布了新的文献求助10
1秒前
2秒前
顺顺安完成签到,获得积分10
2秒前
摩尔曼斯克完成签到,获得积分10
3秒前
虚拟的清炎完成签到 ,获得积分10
3秒前
3秒前
3秒前
sharkmelon应助Amo采纳,获得10
3秒前
4秒前
wabfye完成签到,获得积分20
4秒前
4秒前
星辰大海应助明天的我采纳,获得10
4秒前
iNk应助科科采纳,获得10
4秒前
5秒前
5秒前
zgrmws应助怡然的夏之采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
thunder完成签到,获得积分10
7秒前
哈哈哈完成签到,获得积分10
7秒前
KAZEN发布了新的文献求助20
7秒前
满意的聋五完成签到,获得积分10
8秒前
8秒前
漫漫完成签到,获得积分10
8秒前
英姑应助高贵的如曼采纳,获得10
8秒前
8秒前
斯文的馒头完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
9秒前
桐桐应助欢欢采纳,获得30
9秒前
cablebot发布了新的文献求助10
10秒前
梦会故乡发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667567
求助须知:如何正确求助?哪些是违规求助? 4886514
关于积分的说明 15120741
捐赠科研通 4826376
什么是DOI,文献DOI怎么找? 2583992
邀请新用户注册赠送积分活动 1538029
关于科研通互助平台的介绍 1496163