A Prediction Model for Para-Aortic Lymph Node Metastasis in Cervical Cancer by Radiomics Analysis Using Pre-Treatment MRI Images of the Primary Tumor

医学 无线电技术 宫颈癌 磁共振成像 淋巴结 放射科 转移 Lasso(编程语言) 放射治疗 接收机工作特性 核医学 癌症 内科学 计算机科学 万维网
作者
Ikuno Nishibuchi,Daisuke Kawahara,Masatoshi Kawamura,Katsumaro Kubo,Nobuki Imano,Yuki Takeuchi,A. Saito,Yoshiaki Murakami,Yasushi Nagata
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:111 (3): e618-e618 被引量:2
标识
DOI:10.1016/j.ijrobp.2021.07.1646
摘要

Whole pelvis irradiation (WPI) is the standard radiation technique for locally advanced cervical cancer without para-aortic lymph node (PALN) metastasis. PALN is one of the most common late failure sites in patients treated with WPI. Although there are several reports about the utility of prophylactic extended-field irradiation (EFI), it is still controversial which patients benefit from prophylactic EFI. If we could predict a PALN metastasis from pre-treatment imaging data, it might help patients to select prophylactic EFI. This study aimed to construct a predictive model for the PALN metastasis in patients with cervical cancer by radiomics analysis using pretreatment magnetic resonance imaging (MRI) of the primary tumor.Data of 94 patients with cervical squamous cell carcinoma who underwent radiotherapy between 2003/10 and 2018/2 were split into two sets: 66 patients for the training/validation and 28 patients for testing. The PALN status was classified into two groups (positive or negative). Both the synchronous and metachronous PALN metastasis was classified as PALN positive. A total number of 9394 radiomics features per a patient image were extracted from T1- and T2-weighted MRI images. The set of candidate predictors were selected with the least absolute shrinkage and selection operator (LASSO) logistic regression and build predictive models with neural network classifiers were used. The precision, accuracy, and sensitivity by generating confusion matrices and the areas under the receiver operating characteristic curve (AUC) for each model were evaluated.By the LASSO analysis of the training/validation data, we found 9 radiomics features from T1-weighted MRI image and 61 radiomics features from T2-weighted MRI image for the classification. The accuracy, specificity, sensitivity, and AUC of the prediction model for the dataset in testing group were 67.9 %, 91.0%, 10.0%, and 0.60 with T1-weighted MRI image, 95.7%, 97.0%, 92.5%, and 0.98 with T2-weighted MRI image, 96.4%, 99.0%, 90.7%, and 0.99 with the combination of T1 and T2-weighted MRI images, respectively.We constructed a model to predict the PALN metastasis in patients with cervical cancer using pre-treatment MRI image-based radiomics and machine learning. The model based on T2-weighted image or combination of T1 and T2-wighted MRI image showed promising prediction accuracy. This model may be useful to select patients who benefit from prophylactic EFI.I. Nishibuchi: None. D. Kawahara: None. M. Kawamura: None. K. Kubo: None. N. Imano: None. Y. Takeuchi: None. A. Saito: None. Y. Murakami: None. Y. Nagata: None.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
喵拟吗喵完成签到,获得积分10
刚刚
刚刚
哭泣剑封完成签到,获得积分10
刚刚
搜集达人应助朱滴滴采纳,获得10
刚刚
香蕉觅云应助哭泣丹翠采纳,获得10
2秒前
3秒前
研友_5Y9A75发布了新的文献求助10
3秒前
完美世界应助PPPPP星星采纳,获得10
4秒前
wangdada发布了新的文献求助10
4秒前
5秒前
今后应助无情的盼兰采纳,获得10
5秒前
852应助傲娇的刺猬采纳,获得10
7秒前
小刚完成签到,获得积分10
8秒前
zhangxin完成签到,获得积分10
9秒前
普鲁斯特发布了新的文献求助10
10秒前
陈龙平完成签到 ,获得积分10
10秒前
11秒前
12秒前
14秒前
14秒前
Ava应助茜zi采纳,获得10
16秒前
ren发布了新的文献求助10
18秒前
Yutong完成签到,获得积分10
18秒前
彭于晏应助xx采纳,获得10
18秒前
20秒前
酷波er应助煤灰采纳,获得10
20秒前
传奇3应助123采纳,获得10
21秒前
22秒前
ExtroGod完成签到,获得积分10
24秒前
陶醉觅夏发布了新的文献求助10
25秒前
情怀应助ab采纳,获得10
25秒前
26秒前
3333完成签到,获得积分10
27秒前
ztlooo完成签到,获得积分10
28秒前
28秒前
28秒前
牛肉面完成签到,获得积分0
30秒前
32秒前
33秒前
高分求助中
中国国际图书贸易总公司40周年纪念文集: 史论集 2500
Sustainability in Tides Chemistry 2000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3112787
求助须知:如何正确求助?哪些是违规求助? 2763025
关于积分的说明 7673259
捐赠科研通 2418326
什么是DOI,文献DOI怎么找? 1283724
科研通“疑难数据库(出版商)”最低求助积分说明 619449
版权声明 599586