Detection and Quantification of Nonlabeled Polystyrene Nanoparticles Using a Fluorescent Molecular Rotor

聚苯乙烯 化学 荧光 检出限 纳米尺度 环境化学 天然橡胶 分析化学(期刊) 纳米技术 聚合物 化学工程 色谱法 材料科学 有机化学 工程类 物理 量子力学
作者
Angélique Moraz,Florian Breider
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:93 (45): 14976-14984 被引量:9
标识
DOI:10.1021/acs.analchem.1c02055
摘要

Plastic pollution has reached alarming levels in recent years. While macro- and microplastic pollution are attested and studied since the 1970s, much less is known about the associated nanoscopic fragments. Due to their ability to cross biological barriers and their extended surface area-to-volume ratio, nanoplastics (NPs) are currently considered as one of the major threats for aquatic and terrestrial environments. Therefore, analytical tools are urgently needed to detect and quantify NPs. In this study, a method exploiting the dependence of the fluorescence quantum yield of a probe, namely, 9-(2,2-dicyanovinyl)julolidine (DCVJ), toward its microenvironment was assessed to detect and quantify polystyrene nanoplastics (PSNs). In the presence of PSNs and after excitation at 450 nm, the single-emission band fluorescent molecular rotor (FMR) emission spectrum displays a second peak at 620 nm, which increases with the concentration of PSNs. In pure water, a limit of detection and quantification range of 475-563 μg·L-1 and 1.582-1.875 mg·L-1, respectively, were obtained for 49 nm diameter polystyrene beads (PSB49). The results associated with 100 nm diameter PSNs amount to 518 μg·L-1 and 1.725 mg·L-1. The robustness of the method toward different parameters, the complexity of the matrix, and the PSN characteristics was also assessed. Finally, the method was applied on biological samples. While PSB49 quantification was achieved using radish sprouts at concentrations up to 200 mg·L-1, it was more challenging when handling mussel tissues. This work presents the feasibility to quantify PSNs using DCVJ fluorescence. It paves the way to new perspectives in the challenging field of NPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆胶布发布了新的文献求助10
1秒前
2秒前
hhj02发布了新的文献求助10
2秒前
段落落发布了新的文献求助10
2秒前
hh完成签到,获得积分20
2秒前
ustcliyang完成签到,获得积分10
3秒前
橙子完成签到 ,获得积分10
3秒前
研友_VZG7GZ应助研友_LMBAXn采纳,获得30
3秒前
希望天下0贩的0应助JY采纳,获得10
4秒前
拼搏太英完成签到,获得积分10
4秒前
xiaojiang发布了新的文献求助10
5秒前
5秒前
6秒前
Leon应助XLC采纳,获得10
7秒前
Orange应助缺粥采纳,获得10
7秒前
瘦瘦小萱完成签到,获得积分10
7秒前
7秒前
iNk应助人生有味是清欢采纳,获得10
7秒前
杳鸢应助五條小羊采纳,获得10
7秒前
天涯明月完成签到,获得积分10
8秒前
Lucas应助Hou采纳,获得10
8秒前
10秒前
10秒前
情怀应助一一采纳,获得10
10秒前
森林冰火人完成签到,获得积分10
11秒前
wanci应助兴奋仙人掌采纳,获得10
11秒前
感性的不惜完成签到,获得积分10
11秒前
pny发布了新的文献求助10
11秒前
星辰大海应助鹿鹿采纳,获得10
11秒前
12秒前
13秒前
WizBLue完成签到,获得积分10
13秒前
科研小趴菜完成签到 ,获得积分10
14秒前
14秒前
牧汲完成签到,获得积分10
14秒前
ddaizi完成签到,获得积分10
14秒前
14秒前
16秒前
嵇元容发布了新的文献求助20
16秒前
秦秦勤勤起完成签到,获得积分10
16秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3473601
求助须知:如何正确求助?哪些是违规求助? 3066190
关于积分的说明 9097166
捐赠科研通 2757220
什么是DOI,文献DOI怎么找? 1512818
邀请新用户注册赠送积分活动 699139
科研通“疑难数据库(出版商)”最低求助积分说明 698843