Deep cross-view co-regularized representation learning for glioma subtype identification

判别式 胶质瘤 计算机科学 代表(政治) 人工智能 特征学习 鉴定(生物学) 特征(语言学) 一致性(知识库) 深度学习 特征向量 磁共振成像 模式识别(心理学) 机器学习 医学 生物 遗传学 放射科 哲学 语言学 政治 法学 植物 政治学
作者
Zhenyuan Ning,Chao Tu,Xiaohui Di,Qianjin Feng,Yu Zhang
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:73: 102160-102160 被引量:10
标识
DOI:10.1016/j.media.2021.102160
摘要

The new subtypes of diffuse gliomas are recognized by the World Health Organization (WHO) on the basis of genotypes, e.g., isocitrate dehydrogenase and chromosome arms 1p/19q, in addition to the histologic phenotype. Glioma subtype identification can provide valid guidances for both risk-benefit assessment and clinical decision. The feature representations of gliomas in magnetic resonance imaging (MRI) have been prevalent for revealing underlying subtype status. However, since gliomas are highly heterogeneous tumors with quite variable imaging phenotypes, learning discriminative feature representations in MRI for gliomas remains challenging. In this paper, we propose a deep cross-view co-regularized representation learning framework for glioma subtype identification, in which view representation learning and multiple constraints are integrated into a unified paradigm. Specifically, we first learn latent view-specific representations based on cross-view images generated from MRI via a bi-directional mapping connecting original imaging space and latent space, and view-correlated regularizer and output-consistent regularizer in the latent space are employed to explore view correlation and derive view consistency, respectively. We further learn view-sharable representations which can explore complementary information of multiple views by projecting the view-specific representations into a holistically shared space and enhancing via adversary learning strategy. Finally, the view-specific and view-sharable representations are incorporated for identifying glioma subtype. Experimental results on multi-site datasets demonstrate the proposed method outperforms several state-of-the-art methods in detection of glioma subtype status.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
所所应助仁爱发卡采纳,获得10
刚刚
fanatic应助小帆船采纳,获得10
1秒前
田様应助敏感的孤兰采纳,获得10
1秒前
王碱发布了新的文献求助10
1秒前
zw完成签到,获得积分10
2秒前
3秒前
HOPKINSON发布了新的文献求助20
3秒前
Sea完成签到,获得积分10
3秒前
3秒前
金cheng5发布了新的文献求助10
4秒前
4秒前
靓丽银耳汤完成签到,获得积分10
4秒前
Lilysound发布了新的文献求助10
5秒前
Jasper应助吃不饱星球球长采纳,获得10
5秒前
5秒前
5秒前
6秒前
changqing完成签到 ,获得积分10
6秒前
神勇弘文完成签到,获得积分10
7秒前
7秒前
momo发布了新的文献求助10
7秒前
LRX发布了新的文献求助10
8秒前
8秒前
9秒前
领导范儿应助WUWEI采纳,获得10
9秒前
卡卡卡完成签到,获得积分10
9秒前
小二郎应助shaco采纳,获得10
10秒前
caiia发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
Peth完成签到,获得积分10
12秒前
jiangtoali发布了新的文献求助10
12秒前
传奇3应助动人的珩采纳,获得10
12秒前
13秒前
14秒前
14秒前
14秒前
皇甫成发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727744
求助须知:如何正确求助?哪些是违规求助? 5309981
关于积分的说明 15312237
捐赠科研通 4875187
什么是DOI,文献DOI怎么找? 2618600
邀请新用户注册赠送积分活动 1568248
关于科研通互助平台的介绍 1524927