The PHU‐NET: A robust phase unwrapping method for MRI based on deep learning

计算机科学 稳健性(进化) 人工智能 深度学习 残余物 相位展开 模式识别(心理学) 相(物质) 计算机视觉 算法 生物化学 化学 物理 干涉测量 有机化学 天文 基因
作者
Hongyu Zhou,Chuanli Cheng,Hao Peng,Dong Liang,Xin Liu,Hairong Zheng,Chao Zou
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:86 (6): 3321-3333 被引量:21
标识
DOI:10.1002/mrm.28927
摘要

This work was aimed at designing a deep-learning-based approach for MR image phase unwrapping to improve the robustness and efficiency of traditional methods.A deep learning network called PHU-NET was designed for MR phase unwrapping. In this network, a novel training data generation method was proposed to simulate the wrapping patterns in MR phase images. The wrapping boundary and wrapping counts were explicitly estimated and used for network training. The proposed method was quantitatively evaluated and compared to other methods using a number of simulated datasets with varying signal-to-noise ratio (SNR) and MR phase images from various parts of the human body.The results showed that our method performed better in the simulated data even under an extremely low SNR. The proposed method had less residual wrapping in the images from various parts of human body and worked well in the presence of severe anatomical discontinuity. Our method was also advantageous in terms of computational efficiency compared to the traditional methods.This work proposed a robust and computationally efficient MR phase unwrapping method based on a deep learning network, which has promising performance in applications using MR phase information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
罗胖胖完成签到 ,获得积分10
刚刚
细腻灵发布了新的文献求助10
刚刚
memorise完成签到,获得积分10
刚刚
1秒前
1秒前
容二遥完成签到,获得积分20
1秒前
自信河马发布了新的文献求助10
1秒前
歪歪发布了新的文献求助10
2秒前
英姑应助云止采纳,获得10
2秒前
这个人巨爱学习完成签到,获得积分10
3秒前
FashionBoy应助llj采纳,获得10
3秒前
3秒前
容二遥发布了新的文献求助10
4秒前
大模型应助方方方方方采纳,获得10
4秒前
4秒前
wwwewqe完成签到 ,获得积分20
4秒前
regene完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
向阳发布了新的文献求助10
5秒前
jisean完成签到,获得积分10
5秒前
zzz关闭了zzz文献求助
7秒前
所所应助科研大捞采纳,获得10
7秒前
自信河马完成签到,获得积分10
8秒前
rqtq2完成签到,获得积分10
8秒前
8秒前
柏果完成签到,获得积分10
9秒前
浅蓝完成签到 ,获得积分10
9秒前
淮竹发布了新的文献求助10
9秒前
孙宇完成签到,获得积分10
9秒前
9秒前
哈哈哈发布了新的文献求助10
9秒前
9秒前
9秒前
赘婿应助ddd采纳,获得10
9秒前
JamesPei应助体贴旭尧采纳,获得10
10秒前
zy发布了新的文献求助10
10秒前
mhy完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718656
求助须知:如何正确求助?哪些是违规求助? 5253667
关于积分的说明 15286658
捐赠科研通 4868722
什么是DOI,文献DOI怎么找? 2614394
邀请新用户注册赠送积分活动 1564266
关于科研通互助平台的介绍 1521785