The PHU‐NET: A robust phase unwrapping method for MRI based on deep learning

计算机科学 稳健性(进化) 人工智能 深度学习 残余物 相位展开 模式识别(心理学) 相(物质) 计算机视觉 算法 生物化学 化学 物理 干涉测量 有机化学 天文 基因
作者
Hongyu Zhou,Chuanli Cheng,Hao Peng,Dong Liang,Xin Liu,Hairong Zheng,Chao Zou
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:86 (6): 3321-3333 被引量:21
标识
DOI:10.1002/mrm.28927
摘要

This work was aimed at designing a deep-learning-based approach for MR image phase unwrapping to improve the robustness and efficiency of traditional methods.A deep learning network called PHU-NET was designed for MR phase unwrapping. In this network, a novel training data generation method was proposed to simulate the wrapping patterns in MR phase images. The wrapping boundary and wrapping counts were explicitly estimated and used for network training. The proposed method was quantitatively evaluated and compared to other methods using a number of simulated datasets with varying signal-to-noise ratio (SNR) and MR phase images from various parts of the human body.The results showed that our method performed better in the simulated data even under an extremely low SNR. The proposed method had less residual wrapping in the images from various parts of human body and worked well in the presence of severe anatomical discontinuity. Our method was also advantageous in terms of computational efficiency compared to the traditional methods.This work proposed a robust and computationally efficient MR phase unwrapping method based on a deep learning network, which has promising performance in applications using MR phase information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星月完成签到,获得积分10
刚刚
wanfeng发布了新的文献求助10
刚刚
ZZ发布了新的文献求助10
刚刚
1秒前
今后应助XINGXING采纳,获得10
1秒前
2秒前
Synthesis完成签到 ,获得积分10
2秒前
3秒前
3秒前
lj应助高贵的悟空采纳,获得10
4秒前
落后的小松鼠完成签到,获得积分10
4秒前
4秒前
冀晓梦完成签到,获得积分10
4秒前
成就白亦完成签到,获得积分10
4秒前
Lynn完成签到,获得积分10
5秒前
林夏应助土豆粉和林采纳,获得10
5秒前
5秒前
5秒前
7秒前
7秒前
7秒前
Xing完成签到,获得积分20
7秒前
7秒前
hehe发布了新的文献求助10
8秒前
8秒前
好奇素素完成签到,获得积分10
8秒前
8秒前
大气映天发布了新的文献求助10
8秒前
爱爱精神境界完成签到,获得积分10
8秒前
CipherSage应助wanfeng采纳,获得10
8秒前
顾矜应助JJ采纳,获得10
10秒前
10秒前
nnnn发布了新的文献求助30
10秒前
11秒前
朱建军发布了新的文献求助10
11秒前
11秒前
zh发布了新的文献求助10
11秒前
11秒前
lulu完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718472
求助须知:如何正确求助?哪些是违规求助? 5252894
关于积分的说明 15285900
捐赠科研通 4868646
什么是DOI,文献DOI怎么找? 2614347
邀请新用户注册赠送积分活动 1564180
关于科研通互助平台的介绍 1521729