生长素
转录因子
苹果属植物
生物
植物
园艺
细胞生物学
遗传学
基因
作者
Luping Xu,Fei Shen,Xiaozhao Xu,Qingbo Zheng,Yi Wang,Ting Wu,Wei Li,Changwei Qiu,Xuefeng Xu,Zhenhai Han,Xinzhong Zhang
出处
期刊:Plant Journal
[Wiley]
日期:2021-07-28
卷期号:107 (6): 1663-1680
被引量:16
摘要
Adventitious root (AR) formation is a critical factor in the vegetative propagation of forestry and horticultural plants. Competence for AR formation declines in many species during the miR156/SPL-mediated vegetative phase change. Auxin also plays a regulatory role in AR formation. In apple rootstock, both high miR156 expression and exogenous auxin application are prerequisites for AR formation. However, the mechanism by which the miR156/SPL module interacts with auxin in controlling AR formation is unclear. In this paper, leafy cuttings of juvenile (Mx-J) and adult (Mx-A) phase Malus xiaojinensis were used in an RNA-sequencing experiment. The results revealed that numerous genes involved in phytohormone signaling, carbohydrate metabolism, cell dedifferentiation, and reactivation were downregulated in Mx-A cuttings in response to indole butyric acid treatment. Among the differentially expressed genes, an HD-ZIP transcription factor gene, MxHB13, was found to be under negative regulation of MdSPL26 by directly binding to MxHB13 promoter. MxTIFY9 interacts with MxSPL26 and may play a role in co-repressing the expression of MxHB13. The expression of MxTIFY9 was induced by exogenous indole butyric acid. MxHB13 binds to the promoter of MxABCB19-2 and positively affects the expression. A model is proposed in which MxHB13 links juvenility-limited and auxin-limited AR recalcitrance mechanisms in Mx-A.
科研通智能强力驱动
Strongly Powered by AbleSci AI