Research Progress on New Organic Molecules Design via Machine Learning

化学 有机分子 分子 纳米技术 组合化学 生化工程 有机化学 工程类 材料科学
作者
Pang Tan,Xuhong Liu,Tongtong Chen,Zengguang Qin,Tao Yang,Xiaotong Liu,Xiulei Liu
出处
期刊:Chinese Journal of Organic Chemistry [Science Press]
卷期号:41 (7): 2666-2666 被引量:1
标识
DOI:10.6023/cjoc202012037
摘要

Low-cost and high-performance materials have become more and more important in past decades.It exhibits the technology level of a country.Chemists used to find the candidate material according to property regression and quantitative structure activity relationship (QSAR).Traditional methods focus on finding new molecule from prior knowledge with trial and error experiments.They are time-consuming and low efficiency on screening molecules.The appearance of machine learning (ML) changes this embarrassing situation in two ways.One is accelerating the property prediction process to prevent wasting time on worse candidates.The other is inverse molecule design which expands the imagination of human.Lots of researches show promising results using different inverse design method such as, variational auto-encoder (VAE), generative adversarial networks (GAN), reinforcement learning (RL), and recurrent neural network (RNN).They introduce uncertainty from different level to generate new structure candidates.In any method, molecule descriptor has a great impact on the result.The descriptor converts the 3D structures in real world to a vector or a notation string to feed into all kinds of ML models.Large number of descriptors have been developed in cheminformatic, bioinformatic, quantum chemistry and natural language process (NLP).Some classical descriptors are Coulomb matrix (CM), smooth overlap of atomic positions (SOAP), weighted graph (WG), simplified molecular input line entry specification (SMILES).They show different advantages and solving problems from different aspects.CM has clear definition and good result on energy regression.SOAP is good at reflecting local environment features of an atom.However, they are easy to encode but hard to decode.That is a reason why people prefer WG and SMILES in the structure inverse design tasks.WG and SMILES express structure as a graph (an atom as a node and a bond as an edge) or string to apply massive mature GNN or NLP algorithm on them.Nowadays, most of the ML applications on chemistry and molecule science are focus on developing new model to regress properties.However, it is thought that there is still large improving space on inverse design methods and traditional descriptors.In this paper, WG and SMILES are briefly introduced firstly.Then, four generative models are presented, including VAE, GAN, RL and RNN.Further, the current progress and challenges of inverse design methods are summarized case by case.Finally, some of the author՚s understanding and explorations are given out.It is proved that SMILES with BASE64 preprocessed shows some advantages on molecular reconstruction and worth to study deeply in future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情殇发布了新的文献求助10
刚刚
陈梦发布了新的文献求助10
1秒前
Elsia完成签到 ,获得积分10
1秒前
MchemG应助apeng采纳,获得10
2秒前
cora发布了新的文献求助10
2秒前
学术宝马完成签到,获得积分20
2秒前
wanci应助糟糕的道罡采纳,获得10
2秒前
3秒前
乐观小之应助绿豆蛙采纳,获得10
3秒前
guozi发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
季红发布了新的文献求助10
5秒前
勤奋的绪完成签到,获得积分10
5秒前
cora完成签到,获得积分10
6秒前
wildness发布了新的文献求助10
8秒前
8秒前
小怪兽发布了新的文献求助10
8秒前
邓柳发布了新的文献求助30
9秒前
hellokitty完成签到,获得积分10
9秒前
D5完成签到,获得积分10
9秒前
9秒前
9秒前
Leilei关注了科研通微信公众号
10秒前
肉肉发布了新的文献求助10
10秒前
盛qhhhhhh完成签到,获得积分20
10秒前
zgy发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
容cc完成签到 ,获得积分10
12秒前
叶液发布了新的文献求助10
12秒前
12秒前
木偶关注了科研通微信公众号
13秒前
14秒前
佩佩发布了新的文献求助10
14秒前
Qingqing完成签到,获得积分10
14秒前
14秒前
假面超人发布了新的文献求助10
14秒前
遂安完成签到,获得积分10
14秒前
哇哇哇哇哇完成签到,获得积分10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969458
求助须知:如何正确求助?哪些是违规求助? 3514286
关于积分的说明 11173363
捐赠科研通 3249652
什么是DOI,文献DOI怎么找? 1794948
邀请新用户注册赠送积分活动 875501
科研通“疑难数据库(出版商)”最低求助积分说明 804836