清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Research Progress on New Organic Molecules Design via Machine Learning

化学 有机分子 分子 纳米技术 组合化学 生化工程 有机化学 工程类 材料科学
作者
Pang Tan,Xuhong Liu,Tongtong Chen,Zengguang Qin,Tao Yang,Xiaotong Liu,Xiulei Liu
出处
期刊:Chinese Journal of Organic Chemistry [Shaghai Institute of Organic Chemistry]
卷期号:41 (7): 2666-2666 被引量:1
标识
DOI:10.6023/cjoc202012037
摘要

Low-cost and high-performance materials have become more and more important in past decades.It exhibits the technology level of a country.Chemists used to find the candidate material according to property regression and quantitative structure activity relationship (QSAR).Traditional methods focus on finding new molecule from prior knowledge with trial and error experiments.They are time-consuming and low efficiency on screening molecules.The appearance of machine learning (ML) changes this embarrassing situation in two ways.One is accelerating the property prediction process to prevent wasting time on worse candidates.The other is inverse molecule design which expands the imagination of human.Lots of researches show promising results using different inverse design method such as, variational auto-encoder (VAE), generative adversarial networks (GAN), reinforcement learning (RL), and recurrent neural network (RNN).They introduce uncertainty from different level to generate new structure candidates.In any method, molecule descriptor has a great impact on the result.The descriptor converts the 3D structures in real world to a vector or a notation string to feed into all kinds of ML models.Large number of descriptors have been developed in cheminformatic, bioinformatic, quantum chemistry and natural language process (NLP).Some classical descriptors are Coulomb matrix (CM), smooth overlap of atomic positions (SOAP), weighted graph (WG), simplified molecular input line entry specification (SMILES).They show different advantages and solving problems from different aspects.CM has clear definition and good result on energy regression.SOAP is good at reflecting local environment features of an atom.However, they are easy to encode but hard to decode.That is a reason why people prefer WG and SMILES in the structure inverse design tasks.WG and SMILES express structure as a graph (an atom as a node and a bond as an edge) or string to apply massive mature GNN or NLP algorithm on them.Nowadays, most of the ML applications on chemistry and molecule science are focus on developing new model to regress properties.However, it is thought that there is still large improving space on inverse design methods and traditional descriptors.In this paper, WG and SMILES are briefly introduced firstly.Then, four generative models are presented, including VAE, GAN, RL and RNN.Further, the current progress and challenges of inverse design methods are summarized case by case.Finally, some of the author՚s understanding and explorations are given out.It is proved that SMILES with BASE64 preprocessed shows some advantages on molecular reconstruction and worth to study deeply in future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cyskdsn完成签到 ,获得积分10
1秒前
在路上完成签到 ,获得积分0
1秒前
maggiexjl发布了新的文献求助10
3秒前
赵勇完成签到 ,获得积分10
5秒前
研友_ZbP41L完成签到 ,获得积分10
22秒前
22秒前
xiaochuan925完成签到 ,获得积分10
22秒前
等等发布了新的文献求助10
26秒前
29秒前
Orange应助等等采纳,获得10
34秒前
卂枭发布了新的文献求助10
34秒前
43秒前
46秒前
英俊的铭应助卂枭采纳,获得10
50秒前
汉堡包应助maggiexjl采纳,获得10
51秒前
雪妮完成签到 ,获得积分10
1分钟前
lihe198900完成签到 ,获得积分10
1分钟前
852应助尚好采纳,获得10
1分钟前
1分钟前
尚好完成签到,获得积分20
1分钟前
尚好发布了新的文献求助10
1分钟前
zeannezg完成签到 ,获得积分10
1分钟前
qiaobaqiao完成签到 ,获得积分10
1分钟前
HHM完成签到,获得积分10
1分钟前
重要的天空完成签到 ,获得积分10
2分钟前
木南大宝完成签到 ,获得积分10
3分钟前
spark810发布了新的文献求助10
3分钟前
wz完成签到,获得积分10
3分钟前
3分钟前
Andy发布了新的文献求助30
3分钟前
Andy完成签到,获得积分20
4分钟前
小徐完成签到 ,获得积分10
4分钟前
wangye完成签到 ,获得积分10
4分钟前
Herbs完成签到 ,获得积分10
4分钟前
阔达小懒虫完成签到,获得积分10
4分钟前
5分钟前
qcck完成签到,获得积分10
5分钟前
加贝完成签到 ,获得积分10
5分钟前
elisa828发布了新的文献求助10
5分钟前
如意竺完成签到,获得积分10
5分钟前
高分求助中
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3121711
求助须知:如何正确求助?哪些是违规求助? 2772108
关于积分的说明 7711035
捐赠科研通 2427474
什么是DOI,文献DOI怎么找? 1289396
科研通“疑难数据库(出版商)”最低求助积分说明 621386
版权声明 600158