Research Progress on New Organic Molecules Design via Machine Learning

化学 有机分子 分子 纳米技术 组合化学 生化工程 有机化学 工程类 材料科学
作者
Pang Tan,Xuhong Liu,Tongtong Chen,Zengguang Qin,Tao Yang,Xiaotong Liu,Xiulei Liu
出处
期刊:Chinese Journal of Organic Chemistry [Science Press]
卷期号:41 (7): 2666-2666 被引量:1
标识
DOI:10.6023/cjoc202012037
摘要

Low-cost and high-performance materials have become more and more important in past decades.It exhibits the technology level of a country.Chemists used to find the candidate material according to property regression and quantitative structure activity relationship (QSAR).Traditional methods focus on finding new molecule from prior knowledge with trial and error experiments.They are time-consuming and low efficiency on screening molecules.The appearance of machine learning (ML) changes this embarrassing situation in two ways.One is accelerating the property prediction process to prevent wasting time on worse candidates.The other is inverse molecule design which expands the imagination of human.Lots of researches show promising results using different inverse design method such as, variational auto-encoder (VAE), generative adversarial networks (GAN), reinforcement learning (RL), and recurrent neural network (RNN).They introduce uncertainty from different level to generate new structure candidates.In any method, molecule descriptor has a great impact on the result.The descriptor converts the 3D structures in real world to a vector or a notation string to feed into all kinds of ML models.Large number of descriptors have been developed in cheminformatic, bioinformatic, quantum chemistry and natural language process (NLP).Some classical descriptors are Coulomb matrix (CM), smooth overlap of atomic positions (SOAP), weighted graph (WG), simplified molecular input line entry specification (SMILES).They show different advantages and solving problems from different aspects.CM has clear definition and good result on energy regression.SOAP is good at reflecting local environment features of an atom.However, they are easy to encode but hard to decode.That is a reason why people prefer WG and SMILES in the structure inverse design tasks.WG and SMILES express structure as a graph (an atom as a node and a bond as an edge) or string to apply massive mature GNN or NLP algorithm on them.Nowadays, most of the ML applications on chemistry and molecule science are focus on developing new model to regress properties.However, it is thought that there is still large improving space on inverse design methods and traditional descriptors.In this paper, WG and SMILES are briefly introduced firstly.Then, four generative models are presented, including VAE, GAN, RL and RNN.Further, the current progress and challenges of inverse design methods are summarized case by case.Finally, some of the author՚s understanding and explorations are given out.It is proved that SMILES with BASE64 preprocessed shows some advantages on molecular reconstruction and worth to study deeply in future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热情的元芹完成签到,获得积分10
刚刚
1秒前
陶醉的小海豚完成签到,获得积分10
2秒前
陆晓亦完成签到,获得积分10
2秒前
乐观的觅松完成签到,获得积分10
2秒前
2023204306324发布了新的文献求助10
3秒前
4秒前
端己完成签到,获得积分20
4秒前
5秒前
阿湫发布了新的文献求助10
5秒前
6秒前
6秒前
坤坤完成签到,获得积分10
6秒前
7秒前
STUSSY完成签到,获得积分10
7秒前
wuhuofeng发布了新的文献求助10
8秒前
9秒前
10秒前
10秒前
coco完成签到,获得积分10
11秒前
lshao完成签到 ,获得积分10
12秒前
12秒前
zhou发布了新的文献求助30
13秒前
跋扈完成签到,获得积分10
15秒前
温柔翰发布了新的文献求助10
15秒前
15秒前
Jj发布了新的文献求助10
16秒前
ficus_min发布了新的文献求助10
16秒前
木子发布了新的文献求助10
17秒前
Galato发布了新的文献求助10
17秒前
寒冷哈密瓜完成签到 ,获得积分0
17秒前
大模型应助shen采纳,获得10
18秒前
123566完成签到,获得积分10
18秒前
hohn完成签到,获得积分10
18秒前
科研通AI2S应助bsn采纳,获得10
20秒前
LL发布了新的文献求助10
20秒前
张西西完成签到 ,获得积分10
21秒前
研友_ZAxj7n完成签到,获得积分20
23秒前
海上钢琴家完成签到,获得积分10
23秒前
日富一日完成签到,获得积分10
23秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038524
求助须知:如何正确求助?哪些是违规求助? 3576221
关于积分的说明 11374737
捐赠科研通 3305912
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892688
科研通“疑难数据库(出版商)”最低求助积分说明 815048