清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Research Progress on New Organic Molecules Design via Machine Learning

化学 有机分子 分子 纳米技术 组合化学 生化工程 有机化学 工程类 材料科学
作者
Pang Tan,Xuhong Liu,Tongtong Chen,Zengguang Qin,Tao Yang,Xiaotong Liu,Xiulei Liu
出处
期刊:Chinese Journal of Organic Chemistry [Shaghai Institute of Organic Chemistry]
卷期号:41 (7): 2666-2666 被引量:1
标识
DOI:10.6023/cjoc202012037
摘要

Low-cost and high-performance materials have become more and more important in past decades.It exhibits the technology level of a country.Chemists used to find the candidate material according to property regression and quantitative structure activity relationship (QSAR).Traditional methods focus on finding new molecule from prior knowledge with trial and error experiments.They are time-consuming and low efficiency on screening molecules.The appearance of machine learning (ML) changes this embarrassing situation in two ways.One is accelerating the property prediction process to prevent wasting time on worse candidates.The other is inverse molecule design which expands the imagination of human.Lots of researches show promising results using different inverse design method such as, variational auto-encoder (VAE), generative adversarial networks (GAN), reinforcement learning (RL), and recurrent neural network (RNN).They introduce uncertainty from different level to generate new structure candidates.In any method, molecule descriptor has a great impact on the result.The descriptor converts the 3D structures in real world to a vector or a notation string to feed into all kinds of ML models.Large number of descriptors have been developed in cheminformatic, bioinformatic, quantum chemistry and natural language process (NLP).Some classical descriptors are Coulomb matrix (CM), smooth overlap of atomic positions (SOAP), weighted graph (WG), simplified molecular input line entry specification (SMILES).They show different advantages and solving problems from different aspects.CM has clear definition and good result on energy regression.SOAP is good at reflecting local environment features of an atom.However, they are easy to encode but hard to decode.That is a reason why people prefer WG and SMILES in the structure inverse design tasks.WG and SMILES express structure as a graph (an atom as a node and a bond as an edge) or string to apply massive mature GNN or NLP algorithm on them.Nowadays, most of the ML applications on chemistry and molecule science are focus on developing new model to regress properties.However, it is thought that there is still large improving space on inverse design methods and traditional descriptors.In this paper, WG and SMILES are briefly introduced firstly.Then, four generative models are presented, including VAE, GAN, RL and RNN.Further, the current progress and challenges of inverse design methods are summarized case by case.Finally, some of the author՚s understanding and explorations are given out.It is proved that SMILES with BASE64 preprocessed shows some advantages on molecular reconstruction and worth to study deeply in future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明亮豆芽完成签到 ,获得积分10
11秒前
CC发布了新的文献求助10
39秒前
woxinyouyou完成签到,获得积分0
48秒前
1分钟前
77wlr完成签到,获得积分10
1分钟前
Droplet完成签到,获得积分10
1分钟前
merrylake完成签到 ,获得积分10
1分钟前
2分钟前
小A同学发布了新的文献求助10
2分钟前
婉莹完成签到 ,获得积分0
2分钟前
2分钟前
Hello应助小A同学采纳,获得10
2分钟前
orixero应助笑点低的火龙果采纳,获得10
3分钟前
Gydl完成签到,获得积分10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Bin_Liu发布了新的文献求助10
3分钟前
Lillianzhu1完成签到,获得积分10
3分钟前
银鱼在游完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
笑点低的火龙果完成签到,获得积分20
4分钟前
4分钟前
可可完成签到,获得积分20
4分钟前
陈开发布了新的文献求助10
4分钟前
阿俊完成签到 ,获得积分10
4分钟前
可可发布了新的文献求助10
4分钟前
科研通AI2S应助Bin_Liu采纳,获得10
5分钟前
正直的山雁完成签到,获得积分10
5分钟前
三千完成签到,获得积分10
5分钟前
陈开完成签到,获得积分10
5分钟前
桦奕兮完成签到 ,获得积分10
5分钟前
张智完成签到,获得积分10
6分钟前
无悔完成签到 ,获得积分10
6分钟前
xiawanren00完成签到,获得积分10
6分钟前
dadazhou完成签到,获得积分10
7分钟前
落叶捎来讯息完成签到 ,获得积分10
7分钟前
彦子完成签到 ,获得积分10
7分钟前
踏雪完成签到,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651168
求助须知:如何正确求助?哪些是违规求助? 4783631
关于积分的说明 15053223
捐赠科研通 4809854
什么是DOI,文献DOI怎么找? 2572736
邀请新用户注册赠送积分活动 1528695
关于科研通互助平台的介绍 1487688