Deep learning multimodal fNIRS and EEG signals for bimanual grip force decoding

脑电图 计算机科学 解码方法 人工智能 稳健性(进化) 深度学习 功能近红外光谱 脑-机接口 大脑活动与冥想 模式识别(心理学) 语音识别 认知 心理学 神经科学 基因 电信 生物化学 化学 前额叶皮质
作者
Pablo Ortega,A. Aldo Faisal
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:18 (4): 0460e6-0460e6 被引量:11
标识
DOI:10.1088/1741-2552/ac1ab3
摘要

Abstract Objective. Non-invasive brain-machine interfaces (BMIs) offer an alternative, safe and accessible way to interact with the environment. To enable meaningful and stable physical interactions, BMIs need to decode forces. Although previously addressed in the unimanual case, controlling forces from both hands would enable BMI-users to perform a greater range of interactions. We here investigate the decoding of hand-specific forces. Approach. We maximise cortical information by using electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) and developing a deep-learning architecture with attention and residual layers ( cnnatt ) to improve their fusion. Our task required participants to generate hand-specific force profiles on which we trained and tested our deep-learning and linear decoders. Main results. The use of EEG and fNIRS improved the decoding of bimanual force and the deep-learning models outperformed the linear model. In both cases, the greatest gain in performance was due to the detection of force generation. In particular, the detection of forces was hand-specific and better for the right dominant hand and cnnatt was better at fusing EEG and fNIRS. Consequently, the study of cnnatt revealed that forces from each hand were differently encoded at the cortical level. Cnnatt also revealed traces of the cortical activity being modulated by the level of force which was not previously found using linear models. Significance. Our results can be applied to avoid hand-cross talk during hand force decoding to improve the robustness of BMI robotic devices. In particular, we improve the fusion of EEG and fNIRS signals and offer hand-specific interpretability of the encoded forces which are valuable during motor rehabilitation assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
cherry发布了新的文献求助10
1秒前
yongnamhui完成签到,获得积分10
1秒前
Cool完成签到,获得积分10
1秒前
gq0401应助lele采纳,获得10
2秒前
2秒前
4秒前
JamesPei应助积极的曼冬采纳,获得10
4秒前
yuhang zhu完成签到,获得积分10
5秒前
Sally完成签到,获得积分20
5秒前
完美世界应助円桑采纳,获得10
6秒前
二十四桥明月夜完成签到,获得积分10
7秒前
Finger发布了新的文献求助30
7秒前
8秒前
小二郎应助ytx采纳,获得10
8秒前
9秒前
qzj发布了新的文献求助10
11秒前
12秒前
12秒前
科研通AI5应助Finger采纳,获得10
14秒前
蜗壳完成签到,获得积分10
15秒前
15秒前
落落发布了新的文献求助10
16秒前
科研通AI5应助cruise采纳,获得10
16秒前
小谢发布了新的文献求助30
17秒前
17秒前
无情依霜完成签到,获得积分10
18秒前
18秒前
zho应助yaa采纳,获得40
18秒前
风枫叶发布了新的文献求助10
18秒前
科研老白发布了新的文献求助10
20秒前
希望天下0贩的0应助小羊采纳,获得10
22秒前
纯情的凉面完成签到,获得积分10
23秒前
ytx发布了新的文献求助10
23秒前
tt11111完成签到 ,获得积分10
24秒前
小谢完成签到,获得积分10
24秒前
25秒前
26秒前
26秒前
慕青应助余额不足采纳,获得10
27秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3486950
求助须知:如何正确求助?哪些是违规求助? 3075033
关于积分的说明 9139262
捐赠科研通 2767282
什么是DOI,文献DOI怎么找? 1518530
邀请新用户注册赠送积分活动 703148
科研通“疑难数据库(出版商)”最低求助积分说明 701627