Order-Tuned Deformability of Bismuth Telluride Semiconductors: An Energy-Dissipation Strategy for Large Fracture Strain

材料科学 消散 碲化铋 半导体 应变工程 层错能 打滑(空气动力学) 位错 热电效应 凝聚态物理 复合材料 纳米技术 热电材料 光电子学 热力学 热导率 物理
作者
Ben Huang,Guodong Li,Bo Duan,Wenjuan Li,Pengcheng Zhai,William A. Goddard
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (48): 57629-57637 被引量:3
标识
DOI:10.1021/acsami.1c18583
摘要

In addition to thermoelectric (TE) performance tuning through defect or strain engineering, progress in mechanical research is of increasing importance to wearable applications of bismuth telluride (Bi2Te3) TE semiconductors, which are limited by poor deformability. For improving dislocation-controlled deformability, we clarify an order-tuned energy-dissipation strategy that facilitates large deformation through multilayer alternating slippage and stacking fault destabilization. Given that energy dissipation and dislocation motions are governed by van der Waals sacrificial bond (SB) behavior, molecular dynamics simulation is implemented to reveal the relation between the shear deformability and lattice order changes in Bi2Te3 crystals. Using the disorder parameter (D) that is defined according to the configurational energy distribution, the results of strain rates and initial crack effects show how the proper design of the initial structure and external conditions can suppress strain localization that would cause structural failure from the lack of energy dissipation, resulting in large homogeneous deformation of Bi2Te3 nanocrystals. This study uncovers the essence of the tuning mechanism in which highly deformable Bi2Te3 crystals should become disordered as slowly as possible until fracture. This highlights the role of the substructure evolution of SB-defect synergy that facilitates energy dissipation and performance stability during slipping. The disorder parameter D provides a bridge between micro/local mechanics and fracture strain, hinting at the possible mechanical improvement of Bi2Te3 semiconductors for designing flexible TE devices through order tuning and energy dissipation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小夏发布了新的文献求助10
刚刚
善学以致用应助卷白菜采纳,获得10
刚刚
务实的易形完成签到,获得积分10
刚刚
epmoctzyw完成签到 ,获得积分10
1秒前
清浅发布了新的文献求助10
1秒前
今后应助SYF采纳,获得10
1秒前
1秒前
NexusExplorer应助扶桑采纳,获得10
1秒前
完美蚂蚁发布了新的文献求助10
2秒前
2秒前
方一发布了新的文献求助10
2秒前
最爱吃火锅完成签到,获得积分10
4秒前
JamesPei应助还好采纳,获得10
4秒前
5秒前
5秒前
lrl发布了新的文献求助10
6秒前
8秒前
XXXX发布了新的文献求助10
8秒前
8秒前
完美蚂蚁完成签到,获得积分10
9秒前
听雪发布了新的文献求助10
9秒前
11秒前
方一完成签到,获得积分10
12秒前
一晃儿发布了新的文献求助30
12秒前
英姑应助谨慎觅露采纳,获得10
13秒前
CipherSage应助不安的饼干采纳,获得10
13秒前
adobe完成签到,获得积分10
13秒前
lrl完成签到,获得积分10
15秒前
充电宝应助qaw采纳,获得10
16秒前
崇林同学完成签到,获得积分10
17秒前
17秒前
不配.应助大反应釜采纳,获得20
19秒前
托伐普坦完成签到,获得积分10
19秒前
lucky完成签到,获得积分10
20秒前
Lucas应助小益达采纳,获得10
21秒前
poting应助静宝冲冲冲采纳,获得10
21秒前
善良的亦云完成签到,获得积分10
22秒前
冷静乌龟完成签到,获得积分20
22秒前
王立伟发布了新的文献求助10
24秒前
Lucas应助呼啦呼啦采纳,获得10
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459588
求助须知:如何正确求助?哪些是违规求助? 3053915
关于积分的说明 9039460
捐赠科研通 2743281
什么是DOI,文献DOI怎么找? 1504749
科研通“疑难数据库(出版商)”最低求助积分说明 695392
邀请新用户注册赠送积分活动 694685