Exploring destination image through online reviews: an augmented mining model using latent Dirichlet allocation combined with probabilistic hesitant fuzzy algorithm

计算机科学 潜在Dirichlet分配 旅游 优势和劣势 加权 数据挖掘 概率逻辑 接见者模式 独创性 数据科学 机器学习 人工智能 运筹学 主题模型 地理 数学 医学 认识论 放射科 哲学 考古 程序设计语言 法学 政治学 创造力
作者
Yuyan Luo,Tao Tong,Xiaoxu Zhang,Zheng Yang,Ling Li
出处
期刊:Kybernetes [Emerald Publishing Limited]
卷期号:52 (3): 874-897 被引量:1
标识
DOI:10.1108/k-07-2021-0584
摘要

Purpose In the era of information overload, the density of tourism information and the increasingly sophisticated information needs of consumers have created information confusion for tourists and scenic-area managers. The study aims to help scenic-area managers determine the strengths and weaknesses in the development process of scenic areas and to solve the practical problem of tourists' difficulty in quickly and accurately obtaining the destination image of a scenic area and finding a scenic area that meets their needs. Design/methodology/approach The study uses a variety of machine learning methods, namely, the latent Dirichlet allocation (LDA) theme extraction model, term frequency-inverse document frequency (TF-IDF) weighting method and sentiment analysis. This work also incorporates probabilistic hesitant fuzzy algorithm (PHFA) in multi-attribute decision-making to form an enhanced tourism destination image mining and analysis model based on visitor expression information. The model is intended to help managers and visitors identify the strengths and weaknesses in the development of scenic areas. Jiuzhaigou is used as an example for empirical analysis. Findings In the study, a complete model for the mining analysis of tourism destination image was constructed, and 24,222 online reviews on Jiuzhaigou, China were analyzed in text. The results revealed a total of 10 attributes and 100 attribute elements. From the identified attributes, three negative attributes were identified, namely, crowdedness, tourism cost and accommodation environment. The study provides suggestions for tourists to select attractions and offers recommendations and improvement measures for Jiuzhaigou in terms of crowd control and post-disaster reconstruction. Originality/value Previous research in this area has used small sample data for qualitative analysis. Thus, the current study fills this gap in the literature by proposing a machine learning method that incorporates PHFA through the combination of the ideas of management and multi-attribute decision theory. In addition, the study considers visitors' emotions and thematic preferences from the perspective of their expressed information, based on which the tourism destination image is analyzed. Optimization strategies are provided to help managers of scenic spots in their decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助愉快的语山采纳,获得10
3秒前
ZQP完成签到,获得积分10
5秒前
xyhua925完成签到,获得积分10
5秒前
5秒前
功不唐捐完成签到,获得积分10
5秒前
caoyuya123完成签到 ,获得积分10
5秒前
iehaoang完成签到 ,获得积分10
7秒前
领导范儿应助Mn采纳,获得10
7秒前
8秒前
8秒前
小陈呀完成签到 ,获得积分10
9秒前
9秒前
桐桐应助清脆的夜白采纳,获得10
11秒前
CodeCraft应助无隅采纳,获得10
13秒前
xixilulixiu完成签到 ,获得积分10
14秒前
14秒前
木子木子李完成签到,获得积分10
17秒前
丘比特应助小江不饿采纳,获得10
18秒前
changping应助jackten采纳,获得10
19秒前
ep_bhw发布了新的文献求助10
20秒前
FashionBoy应助胡兴采纳,获得10
21秒前
yyzhou应助Doc采纳,获得10
22秒前
26秒前
尊敬若云完成签到 ,获得积分10
27秒前
28秒前
Jasper应助科研通管家采纳,获得20
29秒前
Hello应助科研通管家采纳,获得10
29秒前
田様应助科研通管家采纳,获得10
29秒前
浮游应助科研通管家采纳,获得10
29秒前
完美世界应助科研通管家采纳,获得10
29秒前
Koalas应助科研通管家采纳,获得10
29秒前
29秒前
浮游应助科研通管家采纳,获得10
29秒前
Owen应助科研通管家采纳,获得10
30秒前
30秒前
JamesPei应助科研通管家采纳,获得10
30秒前
小蘑菇应助科研通管家采纳,获得10
30秒前
追风少年应助科研通管家采纳,获得100
30秒前
星辰大海应助科研通管家采纳,获得10
30秒前
圣迭戈完成签到,获得积分10
30秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208823
求助须知:如何正确求助?哪些是违规求助? 4386109
关于积分的说明 13660182
捐赠科研通 4245203
什么是DOI,文献DOI怎么找? 2329161
邀请新用户注册赠送积分活动 1326969
关于科研通互助平台的介绍 1279265