On-line Estimation Method for Internal Temperature of Lithium-ion Battery Based on Electrochemical Impedance Spectroscopy

电池(电) 介电谱 材料科学 电阻抗 锂(药物) 锂离子电池 输出阻抗 内阻 荷电状态 航程(航空) 分析化学(期刊) 功率(物理) 电化学 电气工程 化学 电极 工程类 物理 热力学 复合材料 物理化学 内分泌学 医学 色谱法
作者
Wenjie Fan,Zhibin Zhang,Ming Dong,Ren Ming
标识
DOI:10.1109/eic49891.2021.9612262
摘要

The electrochemical reaction in lithium ion power battery is easily affected by temperature, which results in the variation of battery output power and capacity. In order to accurately predict the internal temperature of the battery and provide the basis for the battery management strategy, this paper measured and studied the lithium-ion batteries with different State of Charge (SOC) in a wide temperature range based on the electrochemical impedance spectrum, so as to propose an online estimation method of the internal temperature of the battery based on the electrochemical impedance spectrum. The experimental results show that the imaginary part of the impedance spectrum is not affected by SOC in the range of frequency 10-1000Hz within the range of normal operating temperature of lithium battery (5–55 °C). At the same time, it is sensitive to temperature change and can be used as the characteristic parameter of temperature evaluation. After that, 10Hz is selected as the excitation frequency of the estimation of the internal temperature of the battery, and the internal relationship between the imaginary part value of the battery impedance spectrum and the internal temperature is explored to effectively establish the internal temperature evaluation model of the lithium-ion battery. Finally, the test results show that the temperature evaluation model established in this paper can control the temperature evaluation error within 1.5°C. In this paper, it is proved that the imaginary part of impedance spectrum has a good characterization ability for the battery temperature, which can provide reference for the battery temperature control strategy and improve the temperature rise in the battery working process.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GU发布了新的文献求助10
2秒前
YSY005完成签到 ,获得积分20
2秒前
楚江南发布了新的文献求助30
2秒前
3秒前
Lucas应助林北采纳,获得10
3秒前
4秒前
4秒前
orixero应助ShenghuiH采纳,获得10
5秒前
小花小宝和阿飞完成签到 ,获得积分10
6秒前
Torrian完成签到,获得积分10
7秒前
7秒前
ccm应助Ellen采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
LYQ完成签到 ,获得积分10
10秒前
geold完成签到,获得积分10
11秒前
害羞彩虹完成签到,获得积分10
11秒前
12秒前
hautzhl完成签到,获得积分10
12秒前
舒心凡应助whq531608采纳,获得80
13秒前
Atan完成签到,获得积分10
14秒前
零知识完成签到 ,获得积分10
15秒前
chaixiaomao完成签到,获得积分10
15秒前
Jasper应助asADA采纳,获得10
15秒前
刘隽轩完成签到,获得积分20
15秒前
侯长秀完成签到 ,获得积分10
16秒前
16秒前
16秒前
ShenghuiH发布了新的文献求助10
17秒前
cauwindwill完成签到,获得积分10
19秒前
19秒前
qiuwenxian0831完成签到,获得积分10
19秒前
专注思远发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
21秒前
科目三应助666采纳,获得10
25秒前
zz完成签到,获得积分10
25秒前
赘婿应助研友_Zlq6l8采纳,获得10
26秒前
小胡完成签到,获得积分10
26秒前
27秒前
Akim应助ChenkLuo采纳,获得10
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613528
求助须知:如何正确求助?哪些是违规求助? 4698649
关于积分的说明 14898555
捐赠科研通 4736418
什么是DOI,文献DOI怎么找? 2547051
邀请新用户注册赠送积分活动 1511013
关于科研通互助平台的介绍 1473566