温带落叶林
生长季节
每年落叶的
高光谱成像
偏最小二乘回归
生物
特质
温带气候
温带森林
生态学
环境科学
植物
遥感
数学
统计
地理
计算机科学
程序设计语言
作者
Litong Chen,Yi Zhang,Matheus Henrique Nunes,Jaz Stoddart,Sacha Khoury,Aland H. Y. Chan,David A. Coomes
标识
DOI:10.1016/j.rse.2021.112767
摘要
Field spectroscopy is a powerful tool for monitoring leaf functional traits in situ, but it remains unclear whether universal statistical models can be developed to predict traits from spectral information, or whether re-calibration is necessary as conditions vary. In particular, multiple leaf traits vary simultaneously across growing seasons, and it is an open question whether these temporal changes can be predicted successfully from hyperspectral data. To explore this question, monthly changes in 21 physiochemical leaf traits and plant spectra were measured for eight deciduous tree species from the UK. Partial least-squares regression (PLSR) was used to evaluate whether each trait could be predicted from a single PLSR model from reflectance spectra, or whether species- and month-level models were needed. Physiochemical traits and spectra varied greatly over the growing season, although there was less variation among mature leaves harvested between June and September. Importantly, leaf spectroscopy was able to predict seasonal variations of most leaf traits accurately, with accuracies of prediction generally higher for mature leaves. However, for several traits, the PLSR estimation models varied among species, and a single PLSR model could not be used to make accurate species-level predictions. Our findings demonstrate that leaf spectra can successfully predict multiple functional foliar traits through the growing season, establishing one of the fundamentals for monitoring and mapping plant functional diversity in temperate forests from air- and spaceborne imaging spectroscopy.
科研通智能强力驱动
Strongly Powered by AbleSci AI