S3ANet: Spectral-spatial-scale attention network for end-to-end precise crop classification based on UAV-borne H2 imagery

高光谱成像 像素 比例(比率) 遥感 计算机科学 空间分析 图像分辨率 人工智能 模式识别(心理学) 空间生态学 支持向量机 植被(病理学) 边距(机器学习) 地图学 机器学习 地理 病理 生物 医学 生态学
作者
Xin Hu,Xinyu Wang,Yanfei Zhong,Liangpei Zhang
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:183: 147-163 被引量:30
标识
DOI:10.1016/j.isprsjprs.2021.10.014
摘要

Abstract High spatial and spectral resolution (H2) imagery collected by unmanned aerial vehicle (UAV) systems is an important data source for precise crop classification. Although this data source can provide us with abundant information about the crops of interest, it also introduces new challenges for the image processing. Specifically, the spectral similarities of green crops lead to small inter-class distances, and the severe intra-class spectral variability and high spatial heterogeneity in H2 imagery increases the difficulty of precise classification. In addition, the scales of the different crop plots can show great differences, which makes it difficult to determine the optimal patch size for deep learning based classification models. In this paper, a spectral-spatial-scale attention network (S3ANet) is proposed for H2 imagery based precise crop classification. In the proposed method, each channel, each pixel, and each scale perception of the feature map is adaptively weighted to relieve the intra-class spectral variability, the spatial heterogeneity, and the scale difference of the crop plots, respectively. Furthermore, the proposed S3ANet method introduces the additive angular margin loss function to further increase the inter-class distances between the different crops, and reduce the misclassification effect. S3ANet was verified using the public WHU-Hi UAV-borne hyperspectral dataset and the new WHU-Hi-JiaYu dataset, which is a dataset for precise rice classification that was built by the authors. In these experiments, the overall accuracy of the proposed S3ANet method all exceeds 96% under 50 training pixels per class, and it achieved significant improvement compared with some state-of-the-art hyperspectral images classifiers (such as SSRN, CNNCRF and FPGA, etc.). The code of S3ANet is available at http://rsidea.whu.edu.cn/resource_sharing.htm .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
jialin完成签到,获得积分10
4秒前
罗伯特发布了新的文献求助10
5秒前
zhaochenyu完成签到,获得积分10
6秒前
haan发布了新的文献求助10
6秒前
小千完成签到 ,获得积分10
7秒前
8秒前
8秒前
11秒前
sora98完成签到 ,获得积分10
11秒前
充电宝应助RC采纳,获得10
12秒前
田様应助刘锦裕采纳,获得10
12秒前
星辰大海应助sdnihbhew采纳,获得10
13秒前
13秒前
囧囧应助宇航采纳,获得100
13秒前
14秒前
YifanWang应助积极的千雁采纳,获得30
14秒前
好好科研~发布了新的文献求助10
15秒前
小马甲应助洛洛采纳,获得10
15秒前
凉小天发布了新的文献求助10
16秒前
畅快访旋应助lerrygg采纳,获得40
16秒前
烟花应助xuyan采纳,获得10
16秒前
RC发布了新的文献求助10
17秒前
Michael-布莱恩特完成签到,获得积分10
18秒前
18秒前
19秒前
20秒前
icenow完成签到,获得积分20
20秒前
20秒前
RC完成签到,获得积分10
21秒前
22秒前
Ava应助科研通管家采纳,获得10
22秒前
张益萌应助科研通管家采纳,获得30
22秒前
在水一方应助科研通管家采纳,获得10
22秒前
Lucas应助科研通管家采纳,获得10
22秒前
NexusExplorer应助haan采纳,获得10
23秒前
天天快乐应助科研通管家采纳,获得10
23秒前
无花果应助科研通管家采纳,获得10
23秒前
爆米花应助科研通管家采纳,获得10
23秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330054
求助须知:如何正确求助?哪些是违规求助? 2959691
关于积分的说明 8596435
捐赠科研通 2638078
什么是DOI,文献DOI怎么找? 1444156
科研通“疑难数据库(出版商)”最低求助积分说明 668964
邀请新用户注册赠送积分活动 656559