Artificial intelligence in precision medicine in hepatology

医学 肝病学 肝硬化 人工智能 机器学习 内科学 脂肪肝 肾病科 深度学习 放射科 疾病 计算机科学
作者
Tung‐Hung Su,Chih–Horng Wu,Jia‐Horng Kao
出处
期刊:Journal of Gastroenterology and Hepatology [Wiley]
卷期号:36 (3): 569-580 被引量:62
标识
DOI:10.1111/jgh.15415
摘要

Abstract The advancement of investigation tools and electronic health records (EHR) enables a paradigm shift from guideline‐specific therapy toward patient‐specific precision medicine. The multiparametric and large detailed information necessitates novel analyses to explore the insight of diseases and to aid the diagnosis, monitoring, and outcome prediction. Artificial intelligence (AI), machine learning, and deep learning (DL) provide various models of supervised, or unsupervised algorithms, and sophisticated neural networks to generate predictive models more precisely than conventional ones. The data, application tasks, and algorithms are three key components in AI. Various data formats are available in daily clinical practice of hepatology, including radiological imaging, EHR, liver pathology, data from wearable devices, and multi‐omics measurements. The images of abdominal ultrasonography, computed tomography, and magnetic resonance imaging can be used to predict liver fibrosis, cirrhosis, non‐alcoholic fatty liver disease (NAFLD), and differentiation of benign tumors from hepatocellular carcinoma (HCC). Using EHR, the AI algorithms help predict the diagnosis and outcomes of liver cirrhosis, HCC, NAFLD, portal hypertension, varices, liver transplantation, and acute liver failure. AI helps to predict severity and patterns of fibrosis, steatosis, activity of NAFLD, and survival of HCC by using pathological data. Despite of these high potentials of AI application, data preparation, collection, quality, labeling, and sampling biases of data are major concerns. The selection, evaluation, and validation of algorithms, as well as real‐world application of these AI models, are also challenging. Nevertheless, AI opens the new era of precision medicine in hepatology, which will change our future practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gsj完成签到,获得积分10
2秒前
3秒前
4秒前
秋天完成签到,获得积分10
5秒前
淡定的惜关注了科研通微信公众号
8秒前
Zhy发布了新的文献求助10
8秒前
9秒前
蛋挞完成签到,获得积分10
11秒前
李健应助Junning采纳,获得10
13秒前
13秒前
tingting9发布了新的文献求助10
14秒前
15秒前
爆米花应助mark采纳,获得10
16秒前
16秒前
爱看文献的小恐龙完成签到,获得积分10
17秒前
小饼干完成签到 ,获得积分10
19秒前
萧瑟处完成签到 ,获得积分10
20秒前
20秒前
21秒前
孙燕应助鹤鸣采纳,获得30
22秒前
23秒前
loski发布了新的文献求助10
25秒前
随便不放假完成签到 ,获得积分10
26秒前
淡定的惜发布了新的文献求助10
28秒前
威武的亦绿完成签到,获得积分10
28秒前
木丁完成签到,获得积分10
29秒前
29秒前
32秒前
量子星尘发布了新的文献求助30
34秒前
孙燕应助成就山河采纳,获得10
35秒前
36秒前
领导范儿应助幸福大白采纳,获得30
37秒前
谓风发布了新的文献求助10
37秒前
38秒前
q1356478314应助天白采纳,获得10
38秒前
Hanni完成签到 ,获得积分10
38秒前
39秒前
yixiaolou发布了新的文献求助10
39秒前
Junning发布了新的文献求助10
40秒前
41秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989406
求助须知:如何正确求助?哪些是违规求助? 3531522
关于积分的说明 11254187
捐赠科研通 3270174
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174