Artificial intelligence in precision medicine in hepatology

医学 肝病学 肝硬化 人工智能 机器学习 内科学 脂肪肝 肾病科 深度学习 放射科 疾病 计算机科学
作者
Tung‐Hung Su,Chih–Horng Wu,Jia‐Horng Kao
出处
期刊:Journal of Gastroenterology and Hepatology [Wiley]
卷期号:36 (3): 569-580 被引量:62
标识
DOI:10.1111/jgh.15415
摘要

Abstract The advancement of investigation tools and electronic health records (EHR) enables a paradigm shift from guideline‐specific therapy toward patient‐specific precision medicine. The multiparametric and large detailed information necessitates novel analyses to explore the insight of diseases and to aid the diagnosis, monitoring, and outcome prediction. Artificial intelligence (AI), machine learning, and deep learning (DL) provide various models of supervised, or unsupervised algorithms, and sophisticated neural networks to generate predictive models more precisely than conventional ones. The data, application tasks, and algorithms are three key components in AI. Various data formats are available in daily clinical practice of hepatology, including radiological imaging, EHR, liver pathology, data from wearable devices, and multi‐omics measurements. The images of abdominal ultrasonography, computed tomography, and magnetic resonance imaging can be used to predict liver fibrosis, cirrhosis, non‐alcoholic fatty liver disease (NAFLD), and differentiation of benign tumors from hepatocellular carcinoma (HCC). Using EHR, the AI algorithms help predict the diagnosis and outcomes of liver cirrhosis, HCC, NAFLD, portal hypertension, varices, liver transplantation, and acute liver failure. AI helps to predict severity and patterns of fibrosis, steatosis, activity of NAFLD, and survival of HCC by using pathological data. Despite of these high potentials of AI application, data preparation, collection, quality, labeling, and sampling biases of data are major concerns. The selection, evaluation, and validation of algorithms, as well as real‐world application of these AI models, are also challenging. Nevertheless, AI opens the new era of precision medicine in hepatology, which will change our future practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助科研通管家采纳,获得10
刚刚
一颗糖完成签到 ,获得积分10
刚刚
Jasper应助客厅狂欢采纳,获得10
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
刚刚
打打应助无3采纳,获得10
刚刚
小马甲应助科研通管家采纳,获得10
刚刚
星辰大海应助科研通管家采纳,获得10
刚刚
Ben完成签到,获得积分10
刚刚
Orange应助科研通管家采纳,获得10
刚刚
英俊的铭应助科研通管家采纳,获得10
刚刚
丘比特应助自由朋友采纳,获得30
刚刚
Orange应助科研通管家采纳,获得10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
长安完成签到,获得积分10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得30
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
JW完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
欢呼山雁发布了新的文献求助10
1秒前
1秒前
CodeCraft应助生动曼冬采纳,获得10
1秒前
正直宝贝完成签到,获得积分10
2秒前
研友_LN3xyn完成签到,获得积分10
2秒前
2秒前
3秒前
zzz发布了新的文献求助10
3秒前
婷婷子发布了新的文献求助10
4秒前
可爱的函函应助蒋皓天采纳,获得10
4秒前
果实发布了新的文献求助10
5秒前
科研小白完成签到,获得积分10
5秒前
XZM发布了新的文献求助30
6秒前
zhangzhang完成签到,获得积分10
6秒前
顾旻完成签到 ,获得积分10
7秒前
7秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097923
求助须知:如何正确求助?哪些是违规求助? 4310320
关于积分的说明 13429925
捐赠科研通 4137692
什么是DOI,文献DOI怎么找? 2266852
邀请新用户注册赠送积分活动 1269966
关于科研通互助平台的介绍 1206237