Soft Sensor Modeling Method Based on SPA-GWO-SVR for Marine Protease Fermentation Process

软传感器 MATLAB语言 支持向量机 过程(计算) 核(代数) 一般化 多元微积分 计算机科学 工程类 算法 数学 人工智能 控制工程 操作系统 组合数学 数学分析
作者
Zhu Li,Khalil Ur Rehman,Liu Wenhui,Faiza Atique
出处
期刊:Journal of Control Science and Engineering [Hindawi Publishing Corporation]
卷期号:2021: 1-10
标识
DOI:10.1155/2021/6653503
摘要

The marine protease fermentation process is a highly nonlinear, time-varying, multivariable, and strongly coupled complex biochemical reaction process. Due to the growth and reproduction of living organisms, the internal mechanism is very complicated. Some key variables (such as cell concentration, substrate concentration, and enzyme activity) that directly reflect the fermentation process's quality are difficult to measure in real-time by traditional measurement methods. A soft sensor model based on a support vector regression (SVR) is proposed in this paper to resolve this problem. To further improve the model's prediction accuracy, the grey wolf optimization (GWO) algorithm is used to optimize the critical parameters (kernel function width σ, penalty factor c, and insensitivity coefficient ε) of the SVR model. To study the influence of selecting auxiliary variables on soft sensor modeling, the successive projection algorithm (SPA) is used to determine the characteristic variables and compare them with grey relation analysis (GRA) algorithm. Finally, the Excel spreadsheet data was called by MATLAB programming, and the established SPA-GWO-SVR soft sensor model predicted crucial biological variables. The simulation results show that the SPA-GWO-SVR model has higher prediction accuracy and generalization ability than the traditional SPA-SVR model. The real-time monitoring was processed by MATLAB software for the marine protease fermentation process, which met the requirements of optimal control of the marine protease fermentation process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
双刀火鸡完成签到,获得积分10
1秒前
kk发布了新的文献求助10
2秒前
2秒前
无花果应助老实寒云采纳,获得10
3秒前
脑洞疼应助强强采纳,获得10
4秒前
双刀火鸡发布了新的文献求助10
4秒前
大个应助x1981采纳,获得10
6秒前
科研通AI5应助baekhyun采纳,获得10
7秒前
向晚发布了新的文献求助10
7秒前
隐形曼青应助tdtk采纳,获得10
9秒前
9秒前
10秒前
思源应助上岸采纳,获得10
12秒前
2:38am完成签到,获得积分10
12秒前
14秒前
15秒前
酷波er应助干果采纳,获得10
16秒前
sunshine完成签到 ,获得积分10
16秒前
pian完成签到,获得积分10
16秒前
dony发布了新的文献求助10
16秒前
慕青应助结实尔珍采纳,获得30
17秒前
ly发布了新的文献求助10
19秒前
21秒前
zyyy发布了新的文献求助10
22秒前
22秒前
华仔应助小猫采纳,获得10
23秒前
Hello应助阿轩采纳,获得10
23秒前
huhiji完成签到,获得积分10
26秒前
ding应助123123采纳,获得10
28秒前
余琳发布了新的文献求助10
28秒前
如意2023发布了新的文献求助10
28秒前
赘婿应助年轻冥茗采纳,获得10
31秒前
领导范儿应助dony采纳,获得10
32秒前
fullsun发布了新的文献求助10
32秒前
阿童木完成签到,获得积分10
33秒前
34秒前
35秒前
小朋友完成签到,获得积分10
35秒前
ddd发布了新的文献求助10
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745787
求助须知:如何正确求助?哪些是违规求助? 3288729
关于积分的说明 10060328
捐赠科研通 3004942
什么是DOI,文献DOI怎么找? 1649984
邀请新用户注册赠送积分活动 785655
科研通“疑难数据库(出版商)”最低求助积分说明 751204