Soft Sensor Modeling Method Based on SPA-GWO-SVR for Marine Protease Fermentation Process

软传感器 MATLAB语言 支持向量机 过程(计算) 核(代数) 一般化 多元微积分 计算机科学 工程类 算法 数学 人工智能 控制工程 操作系统 组合数学 数学分析
作者
Zhu Li,Khalil Ur Rehman,Liu Wenhui,Faiza Atique
出处
期刊:Journal of Control Science and Engineering [Hindawi Limited]
卷期号:2021: 1-10
标识
DOI:10.1155/2021/6653503
摘要

The marine protease fermentation process is a highly nonlinear, time-varying, multivariable, and strongly coupled complex biochemical reaction process. Due to the growth and reproduction of living organisms, the internal mechanism is very complicated. Some key variables (such as cell concentration, substrate concentration, and enzyme activity) that directly reflect the fermentation process's quality are difficult to measure in real-time by traditional measurement methods. A soft sensor model based on a support vector regression (SVR) is proposed in this paper to resolve this problem. To further improve the model's prediction accuracy, the grey wolf optimization (GWO) algorithm is used to optimize the critical parameters (kernel function width σ, penalty factor c, and insensitivity coefficient ε) of the SVR model. To study the influence of selecting auxiliary variables on soft sensor modeling, the successive projection algorithm (SPA) is used to determine the characteristic variables and compare them with grey relation analysis (GRA) algorithm. Finally, the Excel spreadsheet data was called by MATLAB programming, and the established SPA-GWO-SVR soft sensor model predicted crucial biological variables. The simulation results show that the SPA-GWO-SVR model has higher prediction accuracy and generalization ability than the traditional SPA-SVR model. The real-time monitoring was processed by MATLAB software for the marine protease fermentation process, which met the requirements of optimal control of the marine protease fermentation process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稳重嘉熙发布了新的文献求助10
1秒前
dhdgi完成签到,获得积分20
2秒前
卷白菜发布了新的文献求助10
3秒前
魔幻巨人完成签到,获得积分10
3秒前
Alice完成签到,获得积分10
4秒前
cc发布了新的文献求助10
4秒前
李爱国应助muliushang采纳,获得10
4秒前
SYF发布了新的文献求助10
4秒前
xiaozang完成签到,获得积分10
4秒前
5秒前
Ava应助wang采纳,获得10
5秒前
超级白昼发布了新的文献求助10
6秒前
思源应助红涛采纳,获得10
6秒前
7秒前
牛豁完成签到,获得积分10
7秒前
稳重嘉熙完成签到,获得积分10
8秒前
大个应助萌萌萌采纳,获得10
8秒前
8秒前
wanci应助麦子采纳,获得10
11秒前
kk关闭了kk文献求助
11秒前
11秒前
MMao完成签到,获得积分20
12秒前
大模型应助刻苦的白昼采纳,获得10
12秒前
13秒前
隐形曼青应助友好的天奇采纳,获得10
14秒前
yrz完成签到,获得积分10
15秒前
15秒前
正直的半鬼完成签到,获得积分10
17秒前
17秒前
香草泡芙完成签到 ,获得积分10
17秒前
17秒前
Nuyoah发布了新的文献求助10
18秒前
mzt完成签到,获得积分10
19秒前
赘婿应助sherry采纳,获得10
21秒前
Arui发布了新的文献求助10
21秒前
22秒前
千阳发布了新的文献求助10
22秒前
萌萌萌发布了新的文献求助10
23秒前
Bellamie发布了新的文献求助10
23秒前
Hello应助小益达采纳,获得10
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459588
求助须知:如何正确求助?哪些是违规求助? 3053915
关于积分的说明 9039460
捐赠科研通 2743281
什么是DOI,文献DOI怎么找? 1504749
科研通“疑难数据库(出版商)”最低求助积分说明 695392
邀请新用户注册赠送积分活动 694685