Defective BC2N as an Anode Material with Improved Performance for Lithium-Ion Batteries

单层 阳极 材料科学 吸附 离子 锂(药物) 扩散 纳米技术 化学工程 化学物理 电极 化学 物理化学 热力学 有机化学 内分泌学 工程类 物理 医学
作者
Jing Zhang,Yongfan Zhang,Yi Li,Yurong Ren,Shuping Huang,Wei Lin,Wenkai Chen
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:125 (9): 4946-4954 被引量:36
标识
DOI:10.1021/acs.jpcc.0c10369
摘要

Defect engineering can modify the physical and chemical properties of two-dimensional (2D) materials to advance their effectiveness for applications. Here, we have designed three kinds of single carbon vacancies (VC-I of BC2N-II as well as VC-III and VC-IV of BC2N-III) to systematically investigate their Li adsorption and diffusion performance based on DFT calculations. The electronic structure analysis shows that the existence of the defects plays a crucial role to tune the electronic properties and the performance of BC2N-II and BC2N-III monolayers toward the potential application as anodes of lithium-ion batteries (LIBs). Significantly, compared to the pristine BC2N-II and BC2N-III monolayers that can hardly adsorb Li atoms, defective BC2N monolayers greatly enhance the Li adsorption energy. In addition, the theoretical capacities of defective BC2N monolayers, especially for VC-I of BC2N-II (2256 mAh/g), are extremely high, but the energy barriers of Li transfer in the vicinity of the defective BC2N are relatively large, whereas for escaping defective sites, these levels are comparatively small. Considering the diffusion behavior of Li in the actual process of Li insertion in the anode of the LIBs, we further explored the adsorption and diffusion performance of Li on the modified VC-I monolayer with one Li atom occupying the most stable position (site H) of the defect. Remarkably, the Li can shuttle between the stable sites around the defects with energy barriers as low as 0.45 eV. The calculated voltages for all systems are all within the desired ranges of reported anode materials for LIBs. Our findings provide a theoretical guideline to design reasonable anode materials with defect for LIBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助核桃采纳,获得10
1秒前
Jasper应助核桃采纳,获得10
1秒前
xiaowang完成签到,获得积分10
1秒前
情怀应助核桃采纳,获得10
1秒前
浮游应助核桃采纳,获得10
1秒前
大模型应助核桃采纳,获得10
1秒前
SciGPT应助核桃采纳,获得10
2秒前
完美世界应助核桃采纳,获得30
2秒前
李健的小迷弟应助核桃采纳,获得10
2秒前
充电宝应助核桃采纳,获得10
2秒前
可爱的函函应助核桃采纳,获得10
2秒前
蛋总发布了新的文献求助20
2秒前
hahaagain发布了新的文献求助10
3秒前
TW完成签到,获得积分10
3秒前
小太阳完成签到,获得积分10
3秒前
liuda完成签到,获得积分10
4秒前
4秒前
自由青柏发布了新的文献求助10
4秒前
四月完成签到,获得积分10
4秒前
5秒前
传奇3应助慕金大三采纳,获得10
6秒前
聪慧的正豪应助核桃采纳,获得10
6秒前
小情绪应助核桃采纳,获得10
6秒前
浮游应助核桃采纳,获得10
6秒前
大个应助核桃采纳,获得10
7秒前
JamesPei应助核桃采纳,获得10
7秒前
英姑应助核桃采纳,获得10
7秒前
共享精神应助核桃采纳,获得10
7秒前
晓宇关注了科研通微信公众号
8秒前
shan完成签到,获得积分10
8秒前
尊敬的怀曼完成签到,获得积分10
9秒前
9秒前
安子歌完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
hahaagain完成签到,获得积分10
12秒前
汉堡包应助核桃采纳,获得10
12秒前
科研通AI6应助核桃采纳,获得10
12秒前
科目三应助核桃采纳,获得10
12秒前
淡然的妙芙应助核桃采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5095640
求助须知:如何正确求助?哪些是违规求助? 4308615
关于积分的说明 13424929
捐赠科研通 4135474
什么是DOI,文献DOI怎么找? 2265586
邀请新用户注册赠送积分活动 1268936
关于科研通互助平台的介绍 1204972