Discriminating Heterogeneous Trajectories of Resilience and Depression After Major Life Stressors Using Polygenic Scores

压力源 心理弹性 重性抑郁障碍 心理学 纵向研究 队列 萧条(经济学) 临床心理学 医学 精神科 内科学 心情 宏观经济学 病理 经济 心理治疗师
作者
Katharina Schultebraucks,Karmel W. Choi,Isaac R. Galatzer‐Levy,George A. Bonanno
出处
期刊:JAMA Psychiatry [American Medical Association]
卷期号:78 (7): 744-744 被引量:46
标识
DOI:10.1001/jamapsychiatry.2021.0228
摘要

Major life stressors, such as loss and trauma, increase the risk of depression. It is known that individuals show heterogeneous trajectories of depressive symptoms following major life stressors, including chronic depression, recovery, and resilience. Although common genetic variation has been associated with depression risk, genomic factors that could help discriminate trajectories of risk vs resilience following adversity have not been identified.To assess the discriminatory accuracy of a deep neural net combining joint information from 21 psychiatric and health-related multiple polygenic scores (PGSs) for discriminating resilience vs other longitudinal symptom trajectories with use of longitudinal, genetically informed data on adults exposed to major life stressors.The Health and Retirement Study is a longitudinal panel cohort study in US citizens older than 50 years, with data being collected once every 2 years between 1992 and 2010. A total of 2071 participants who were of European ancestry with available depressive symptom trajectory information after experiencing an index depressogenic major life stressor were included. Latent growth mixture modeling identified heterogeneous trajectories of depressive symptoms before and after major life stressors, including stable low symptoms (ie, resilience), as well as improving, emergent, and preexisting/chronic symptom patterns. Twenty-one PGSs were examined as factors distinctively associated with these heterogeneous trajectories. Local interpretable model-agnostic explanations were applied to examine PGSs associated with each trajectory. Data were analyzed using the DNN model from June to July 2020.Development of depression and resilience were examined in older adults after a major life stressor, such as bereavement, divorce, and job loss, or major health events, such as myocardial infarction and cancer.Discriminatory accuracy of a deep neural net model trained for the multinomial classification of 4 distinct trajectories of depressive symptoms (Center for Epidemiologic Studies-Depression scale) based on 21 PGSs using supervised machine learning.Of the 2071 participants, 1329 were women (64.2%); mean (SD) age was 55.96 (8.52) years. Of these, 1638 (79.1%) were classified as resilient, 160 (7.75) in recovery (improving), 159 (7.7%) with emerging depression, and 114 (5.5%) with preexisting/chronic depression symptoms. Deep neural nets distinguished these 4 trajectories with high discriminatory accuracy (multiclass micro-average area under the curve, 0.88; 95% CI, 0.87-0.89; multiclass macro-average area under the curve, 0.86; 95% CI, 0.85-0.87). Discriminatory accuracy was highest for preexisting/chronic depression (AUC 0.93), followed by emerging depression (AUC 0.88), recovery (AUC 0.87), resilience (AUC 0.75).The results of the longitudinal cohort study suggest that multivariate PGS profiles provide information to accurately distinguish between heterogeneous stress-related risk and resilience phenotypes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
稳稳完成签到,获得积分10
2秒前
思源应助文献采纳,获得10
3秒前
思源应助朱zhu采纳,获得10
3秒前
背书强发布了新的文献求助10
4秒前
4秒前
wlnhyF发布了新的文献求助10
5秒前
大模型应助呆萌棒棒糖采纳,获得10
6秒前
8秒前
茶茶发布了新的文献求助10
8秒前
Owen应助wdb采纳,获得10
9秒前
吱吱发布了新的文献求助10
10秒前
11秒前
逸风望完成签到,获得积分10
11秒前
wdb发布了新的文献求助10
11秒前
田様应助清脆水卉采纳,获得10
12秒前
13秒前
ww发布了新的文献求助10
14秒前
15秒前
我是老大应助易二十采纳,获得10
15秒前
17秒前
17秒前
桐桐应助轻松绿旋采纳,获得10
19秒前
传奇3应助syyw2021采纳,获得30
20秒前
小鲤鱼在睡觉完成签到,获得积分10
21秒前
信仰xy完成签到,获得积分10
21秒前
wdb发布了新的文献求助10
24秒前
Xin发布了新的文献求助10
25秒前
ljl86400完成签到,获得积分10
27秒前
领导范儿应助娇气的背包采纳,获得10
27秒前
30秒前
31秒前
你猜是什么昵称完成签到 ,获得积分10
31秒前
777发布了新的文献求助10
34秒前
34秒前
背书强发布了新的文献求助10
35秒前
6633发布了新的文献求助10
35秒前
哈哈完成签到 ,获得积分10
36秒前
旺仔同学发布了新的文献求助10
37秒前
37秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738580
求助须知:如何正确求助?哪些是违规求助? 3281930
关于积分的说明 10027083
捐赠科研通 2998733
什么是DOI,文献DOI怎么找? 1645432
邀请新用户注册赠送积分活动 782802
科研通“疑难数据库(出版商)”最低求助积分说明 749967