Discriminating Heterogeneous Trajectories of Resilience and Depression After Major Life Stressors Using Polygenic Scores

压力源 心理弹性 重性抑郁障碍 心理学 纵向研究 队列 萧条(经济学) 临床心理学 医学 精神科 内科学 心情 宏观经济学 病理 经济 心理治疗师
作者
Katharina Schultebraucks,Karmel W. Choi,Isaac R. Galatzer‐Levy,George A. Bonanno
出处
期刊:JAMA Psychiatry [American Medical Association]
卷期号:78 (7): 744-744 被引量:41
标识
DOI:10.1001/jamapsychiatry.2021.0228
摘要

Importance

Major life stressors, such as loss and trauma, increase the risk of depression. It is known that individuals show heterogeneous trajectories of depressive symptoms following major life stressors, including chronic depression, recovery, and resilience. Although common genetic variation has been associated with depression risk, genomic factors that could help discriminate trajectories of risk vs resilience following adversity have not been identified.

Objective

To assess the discriminatory accuracy of a deep neural net combining joint information from 21 psychiatric and health-related multiple polygenic scores (PGSs) for discriminating resilience vs other longitudinal symptom trajectories with use of longitudinal, genetically informed data on adults exposed to major life stressors.

Design, Setting, and Participants

The Health and Retirement Study is a longitudinal panel cohort study in US citizens older than 50 years, with data being collected once every 2 years between 1992 and 2010. A total of 2071 participants who were of European ancestry with available depressive symptom trajectory information after experiencing an index depressogenic major life stressor were included. Latent growth mixture modeling identified heterogeneous trajectories of depressive symptoms before and after major life stressors, including stable low symptoms (ie, resilience), as well as improving, emergent, and preexisting/chronic symptom patterns. Twenty-one PGSs were examined as factors distinctively associated with these heterogeneous trajectories. Local interpretable model-agnostic explanations were applied to examine PGSs associated with each trajectory. Data were analyzed using the DNN model from June to July 2020.

Exposures

Development of depression and resilience were examined in older adults after a major life stressor, such as bereavement, divorce, and job loss, or major health events, such as myocardial infarction and cancer.

Main Outcomes and Measures

Discriminatory accuracy of a deep neural net model trained for the multinomial classification of 4 distinct trajectories of depressive symptoms (Center for Epidemiologic Studies–Depression scale) based on 21 PGSs using supervised machine learning.

Results

Of the 2071 participants, 1329 were women (64.2%); mean (SD) age was 55.96 (8.52) years. Of these, 1638 (79.1%) were classified as resilient, 160 (7.75) in recovery (improving), 159 (7.7%) with emerging depression, and 114 (5.5%) with preexisting/chronic depression symptoms. Deep neural nets distinguished these 4 trajectories with high discriminatory accuracy (multiclass micro-average area under the curve, 0.88; 95% CI, 0.87-0.89; multiclass macro-average area under the curve, 0.86; 95% CI, 0.85-0.87). Discriminatory accuracy was highest for preexisting/chronic depression (AUC 0.93), followed by emerging depression (AUC 0.88), recovery (AUC 0.87), resilience (AUC 0.75).

Conclusions and Relevance

The results of the longitudinal cohort study suggest that multivariate PGS profiles provide information to accurately distinguish between heterogeneous stress-related risk and resilience phenotypes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mc1220发布了新的文献求助10
1秒前
结实幼荷发布了新的文献求助10
1秒前
糖果乖乖完成签到 ,获得积分10
1秒前
wzhang完成签到,获得积分10
2秒前
2秒前
顺利面包完成签到,获得积分10
2秒前
pllll完成签到,获得积分10
2秒前
紧张的明轩完成签到 ,获得积分20
3秒前
3秒前
cc关注了科研通微信公众号
3秒前
4秒前
乐乐应助西瓜西瓜采纳,获得10
6秒前
小蘑菇应助DChen采纳,获得10
7秒前
7秒前
7秒前
甜美三娘完成签到,获得积分10
7秒前
8秒前
gan发布了新的文献求助10
8秒前
8秒前
游戏玩家发布了新的文献求助10
8秒前
KY Mr.WANG发布了新的文献求助10
8秒前
结实幼荷完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
小蘑菇应助valentin采纳,获得10
9秒前
科目三应助mc1220采纳,获得10
9秒前
淡定高山完成签到,获得积分10
10秒前
石大头完成签到,获得积分10
10秒前
AbA完成签到,获得积分10
10秒前
11秒前
上官若男应助Harish采纳,获得10
11秒前
薰硝壤应助研友_EZ1GJL采纳,获得10
12秒前
孤独靖柏发布了新的文献求助10
12秒前
emma发布了新的文献求助10
13秒前
13秒前
汽水完成签到 ,获得积分10
13秒前
wang发布了新的文献求助10
14秒前
瘦瘦忆南完成签到 ,获得积分10
14秒前
彭于彦祖应助旺王小小酥采纳,获得150
15秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3169709
求助须知:如何正确求助?哪些是违规求助? 2820854
关于积分的说明 7932432
捐赠科研通 2481185
什么是DOI,文献DOI怎么找? 1321712
科研通“疑难数据库(出版商)”最低求助积分说明 633340
版权声明 602561