Cross-Sensor Remote-Sensing Images Scene Understanding Based on Transfer Learning Between Heterogeneous Networks

计算机科学 管道(软件) 无线传感器网络 符号 学习迁移 多光谱图像 人工智能 任务(项目管理) 图像传感器 深度学习 方案(数学) 模式识别(心理学) 数据挖掘 计算机视觉 数学 计算机网络 算术 数学分析 经济 管理 程序设计语言
作者
Yuze Wang,Rong Xiao,Ji Qi,Chao Tao
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:12
标识
DOI:10.1109/lgrs.2021.3116601
摘要

Over the past decades, the successful invention and employment of multiple sensors have marked the advent of a new era in multisensor remote-sensing (RS) images acquisition. To effectively utilize the massive multisensor images for RS scene understanding, we expect that a scene classification model learned with particular sensor data can generalize well to other sensor data. However, this is a very challenging task due to the cross-sensor data differences. In the deep learning (DL) pipeline, a common way to handle this challenging task is to fine-tune the models pretrained on source sensor data with limited labeled data from the target sensor. Unfortunately, fine-tune technique is usually applied between homogeneous networks, which may not be the best choice if the source and target data are largely different. To address these issues, we formulate the cross-sensor RS scene understanding problem as a heterogeneous network-oriented transfer learning problem, in which the source and the target networks are different and data-oriented selected. Afterward, the knowledge between heterogeneous networks is transferred using the pseudo-label recursive propagation mechanism inspired by the concept of knowledge distillation. To the best of our knowledge, this is the first time to investigate the cross-sensor scene classification problem by constructing such a heterogeneous networks’ transfer scheme in RS fields. Our experiments using two cross-sensor RS datasets [aerial images $\rightarrow $ multispectral images (MSIs) and aerial images $\rightarrow $ hyper-spectral images (HSIs)] demonstrated that the proposed transfer learning strategy based on heterogeneous networks outperforms the supervised learning (SL) and fine-tune scheme for cross-sensor scene classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李李发布了新的文献求助10
1秒前
犬狗狗发布了新的文献求助20
2秒前
ding应助张明月采纳,获得10
2秒前
大模型应助大雨采纳,获得10
2秒前
搜集达人应助yh采纳,获得10
3秒前
NexusExplorer应助HHHHD采纳,获得10
4秒前
4秒前
苹果发布了新的文献求助10
5秒前
小马甲应助笨笨雪碧采纳,获得10
6秒前
伯约发布了新的文献求助10
6秒前
songyuan发布了新的文献求助10
6秒前
mimi123发布了新的文献求助10
7秒前
8秒前
8秒前
流萤完成签到,获得积分10
8秒前
8秒前
marinzou发布了新的文献求助10
9秒前
Morning发布了新的文献求助10
10秒前
愉快梦芝完成签到,获得积分20
11秒前
17完成签到 ,获得积分10
11秒前
朱一龙发布了新的文献求助10
11秒前
12秒前
尐菟菟完成签到,获得积分10
12秒前
李爱国应助北北采纳,获得10
12秒前
明理冰淇淋完成签到,获得积分10
12秒前
眯眯眼完成签到,获得积分10
12秒前
小二郎应助羊羊吃芋圆采纳,获得10
13秒前
13秒前
愉快梦芝发布了新的文献求助10
14秒前
斯文败类应助单薄的书琴采纳,获得10
14秒前
喜妞完成签到,获得积分20
14秒前
songyuan完成签到,获得积分10
14秒前
14秒前
14秒前
啵乐乐发布了新的文献求助10
15秒前
16秒前
16秒前
16秒前
16秒前
流萤发布了新的文献求助10
16秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3415343
求助须知:如何正确求助?哪些是违规求助? 3017186
关于积分的说明 8880041
捐赠科研通 2704787
什么是DOI,文献DOI怎么找? 1483057
科研通“疑难数据库(出版商)”最低求助积分说明 685639
邀请新用户注册赠送积分活动 680604