Integrity assessment of corroded oil and gas pipelines using machine learning: A systematic review

管道运输 机器学习 管道(软件) 支持向量机 概率逻辑 领域(数学) 诚信管理 人工智能 计算机科学 电流(流体) 石油工程 工程类 数据挖掘 机械工程 数学 纯数学 电气工程
作者
Afzal Ahmed Soomro,Ainul Akmar Mokhtar,Jundika C. Kurnia,Najeebullah Lashari,Huimin Lu,Chico Sambo
出处
期刊:Engineering Failure Analysis [Elsevier]
卷期号:131: 105810-105810 被引量:128
标识
DOI:10.1016/j.engfailanal.2021.105810
摘要

Abstract Hydrocarbon fluid integrity evaluation in oil and gas pipelines is important for anticipating HSE measures. Ignoring corrosion is unavoidable and may have severe personal, economic, and environmental consequences. To anticipate corrosion's unexpected behavior, most research relies on deterministic and probabilistic models. However, machine learning-based approaches are better suited to the complex and extensive nature of degraded oil and gas pipelines. Also, using machine learning to assess integrity is a new study field. As a result, the literature lacks a comprehensive evaluation of current research issues. This study's goal is to evaluate the current state of machine learning (methods, variables, and datasets) and propose future directions for practitioners and academics. Currently, machine learning techniques are favored for predicting the integrity of damaged oil and gas pipelines. ANN, SVM, and hybrid models outperform due to the combined strength of the constituent models. Given the benefits of both, most popular machine learning researchers favor hybrid models over standalone models. We found that most current research utilizes field data, simulation data, and experimental data, with field data being the most often used. Temperature, pH, pressure, and velocity are input characteristics that have been included in most studies, demonstrating their importance in corroded oil and gas pipeline integrity assessment. This study also identified research gaps and shortcomings such as data availability, accuracy, and validation. Finally, some future suggestions and recommendations are proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Owen应助林木木采纳,获得10
1秒前
无花果应助guozizi采纳,获得30
2秒前
2秒前
lonely完成签到,获得积分10
2秒前
3秒前
含蓄的晓绿完成签到,获得积分10
4秒前
6秒前
lonely发布了新的文献求助10
6秒前
hanzhiyuxing发布了新的文献求助10
6秒前
沉醉发布了新的文献求助50
6秒前
7秒前
尼古拉斯铁柱完成签到 ,获得积分10
9秒前
啦啦啦啦啦完成签到 ,获得积分20
11秒前
坦率灵槐应助你好采纳,获得10
11秒前
CipherSage应助日尧采纳,获得10
11秒前
优娜发布了新的文献求助10
11秒前
传奇3应助奥托米洛采纳,获得10
12秒前
12秒前
mcw发布了新的文献求助20
12秒前
FashionBoy应助盛小铃采纳,获得30
12秒前
量子星尘发布了新的文献求助10
13秒前
王家辉完成签到,获得积分10
13秒前
冷静海云完成签到,获得积分20
13秒前
15秒前
Owen应助张张张张闭嘴采纳,获得10
16秒前
1212发布了新的文献求助10
16秒前
春桑早点睡完成签到,获得积分10
17秒前
1122321发布了新的文献求助10
18秒前
19秒前
领导范儿应助魁梧的绿蕊采纳,获得10
19秒前
ding应助皮皮大王采纳,获得10
20秒前
司马飞飞完成签到,获得积分10
21秒前
张宇鑫完成签到,获得积分10
22秒前
23秒前
23秒前
华国锋完成签到,获得积分0
24秒前
田彬杰完成签到,获得积分10
27秒前
001发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5632408
求助须知:如何正确求助?哪些是违规求助? 4726818
关于积分的说明 14981984
捐赠科研通 4790354
什么是DOI,文献DOI怎么找? 2558257
邀请新用户注册赠送积分活动 1518661
关于科研通互助平台的介绍 1479107