Integrity assessment of corroded oil and gas pipelines using machine learning: A systematic review

管道运输 机器学习 管道(软件) 支持向量机 概率逻辑 领域(数学) 诚信管理 人工智能 计算机科学 电流(流体) 石油工程 工程类 数据挖掘 机械工程 数学 纯数学 电气工程
作者
Afzal Ahmed Soomro,Ainul Akmar Mokhtar,Jundika C. Kurnia,Najeebullah Lashari,Huimin Lu,Chico Sambo
出处
期刊:Engineering Failure Analysis [Elsevier]
卷期号:131: 105810-105810 被引量:128
标识
DOI:10.1016/j.engfailanal.2021.105810
摘要

Abstract Hydrocarbon fluid integrity evaluation in oil and gas pipelines is important for anticipating HSE measures. Ignoring corrosion is unavoidable and may have severe personal, economic, and environmental consequences. To anticipate corrosion's unexpected behavior, most research relies on deterministic and probabilistic models. However, machine learning-based approaches are better suited to the complex and extensive nature of degraded oil and gas pipelines. Also, using machine learning to assess integrity is a new study field. As a result, the literature lacks a comprehensive evaluation of current research issues. This study's goal is to evaluate the current state of machine learning (methods, variables, and datasets) and propose future directions for practitioners and academics. Currently, machine learning techniques are favored for predicting the integrity of damaged oil and gas pipelines. ANN, SVM, and hybrid models outperform due to the combined strength of the constituent models. Given the benefits of both, most popular machine learning researchers favor hybrid models over standalone models. We found that most current research utilizes field data, simulation data, and experimental data, with field data being the most often used. Temperature, pH, pressure, and velocity are input characteristics that have been included in most studies, demonstrating their importance in corroded oil and gas pipeline integrity assessment. This study also identified research gaps and shortcomings such as data availability, accuracy, and validation. Finally, some future suggestions and recommendations are proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
成就以山完成签到 ,获得积分10
1秒前
1秒前
长情诗蕾完成签到,获得积分10
2秒前
2秒前
朴素幼晴发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
chenyuyuan发布了新的文献求助10
3秒前
知了睡醒了完成签到,获得积分10
4秒前
Singhi发布了新的文献求助10
5秒前
li发布了新的文献求助10
5秒前
橘子完成签到,获得积分20
6秒前
yiyyyy发布了新的文献求助10
6秒前
6秒前
小八儿完成签到,获得积分10
7秒前
7秒前
要减肥千秋完成签到,获得积分10
8秒前
桑葚啊完成签到,获得积分10
8秒前
8秒前
bdsb完成签到,获得积分10
8秒前
橘子发布了新的文献求助10
8秒前
8秒前
bkagyin应助STAN采纳,获得10
9秒前
9秒前
henryoy发布了新的文献求助10
10秒前
11秒前
栀暖棠深完成签到,获得积分10
12秒前
球球完成签到,获得积分10
12秒前
12秒前
灵巧天玉完成签到,获得积分10
12秒前
cc完成签到 ,获得积分10
12秒前
高须杨发布了新的文献求助10
13秒前
zheya发布了新的文献求助10
13秒前
WFZ发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
英俊的铭应助科研通管家采纳,获得30
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5511824
求助须知:如何正确求助?哪些是违规求助? 4606286
关于积分的说明 14499033
捐赠科研通 4541686
什么是DOI,文献DOI怎么找? 2488598
邀请新用户注册赠送积分活动 1470681
关于科研通互助平台的介绍 1443002