已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Integrity assessment of corroded oil and gas pipelines using machine learning: A systematic review

管道运输 机器学习 管道(软件) 支持向量机 概率逻辑 领域(数学) 诚信管理 人工智能 计算机科学 电流(流体) 石油工程 工程类 数据挖掘 机械工程 数学 纯数学 电气工程
作者
Afzal Ahmed Soomro,Ainul Akmar Mokhtar,Jundika C. Kurnia,Najeebullah Lashari,Huimin Lu,Chico Sambo
出处
期刊:Engineering Failure Analysis [Elsevier]
卷期号:131: 105810-105810 被引量:128
标识
DOI:10.1016/j.engfailanal.2021.105810
摘要

Abstract Hydrocarbon fluid integrity evaluation in oil and gas pipelines is important for anticipating HSE measures. Ignoring corrosion is unavoidable and may have severe personal, economic, and environmental consequences. To anticipate corrosion's unexpected behavior, most research relies on deterministic and probabilistic models. However, machine learning-based approaches are better suited to the complex and extensive nature of degraded oil and gas pipelines. Also, using machine learning to assess integrity is a new study field. As a result, the literature lacks a comprehensive evaluation of current research issues. This study's goal is to evaluate the current state of machine learning (methods, variables, and datasets) and propose future directions for practitioners and academics. Currently, machine learning techniques are favored for predicting the integrity of damaged oil and gas pipelines. ANN, SVM, and hybrid models outperform due to the combined strength of the constituent models. Given the benefits of both, most popular machine learning researchers favor hybrid models over standalone models. We found that most current research utilizes field data, simulation data, and experimental data, with field data being the most often used. Temperature, pH, pressure, and velocity are input characteristics that have been included in most studies, demonstrating their importance in corroded oil and gas pipeline integrity assessment. This study also identified research gaps and shortcomings such as data availability, accuracy, and validation. Finally, some future suggestions and recommendations are proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪猪发布了新的文献求助10
1秒前
Awaitingzc发布了新的文献求助10
1秒前
失眠采白发布了新的文献求助10
1秒前
2秒前
卡西诺玛发布了新的文献求助10
2秒前
情怀应助又困了大王采纳,获得10
3秒前
4秒前
哆啦完成签到 ,获得积分10
4秒前
苏洋完成签到 ,获得积分10
5秒前
6秒前
7秒前
9秒前
上官老黑发布了新的文献求助10
9秒前
Hello应助农安咪采纳,获得10
9秒前
LC完成签到,获得积分10
10秒前
小丁完成签到 ,获得积分10
10秒前
rayc应助嘟嘟爱睡觉采纳,获得10
10秒前
duou发布了新的文献求助10
13秒前
刘忙发布了新的文献求助10
14秒前
15秒前
Awaitingzc完成签到,获得积分10
15秒前
17秒前
脑洞疼应助小凯采纳,获得10
19秒前
饱满夏瑶发布了新的文献求助10
20秒前
shuiyu完成签到,获得积分10
22秒前
77发布了新的文献求助30
22秒前
23秒前
gakiki发布了新的文献求助20
24秒前
荒野男完成签到 ,获得积分10
25秒前
不要碧莲完成签到,获得积分10
26秒前
duou完成签到,获得积分20
27秒前
无限铸海发布了新的文献求助10
27秒前
JamesPei应助夏末采纳,获得10
27秒前
28秒前
桐桐应助shen采纳,获得10
28秒前
30秒前
MchemG应助EDEN采纳,获得10
31秒前
传奇3应助EDEN采纳,获得10
32秒前
浮游应助EDEN采纳,获得10
32秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407434
求助须知:如何正确求助?哪些是违规求助? 4525015
关于积分的说明 14100656
捐赠科研通 4438741
什么是DOI,文献DOI怎么找? 2436477
邀请新用户注册赠送积分活动 1428463
关于科研通互助平台的介绍 1406482