Integrity assessment of corroded oil and gas pipelines using machine learning: A systematic review

管道运输 机器学习 管道(软件) 支持向量机 概率逻辑 领域(数学) 诚信管理 人工智能 计算机科学 电流(流体) 石油工程 工程类 风险分析(工程)
作者
Afzal Ahmed Soomro,Ainul Akmar Mokhtar,Jundika Chandra Kurnia,Najeebullah Lashari,Huimin Lu,Chico Sambo
出处
期刊:Engineering Failure Analysis [Elsevier BV]
卷期号:131: 105810- 被引量:3
标识
DOI:10.1016/j.engfailanal.2021.105810
摘要

Abstract Hydrocarbon fluid integrity evaluation in oil and gas pipelines is important for anticipating HSE measures. Ignoring corrosion is unavoidable and may have severe personal, economic, and environmental consequences. To anticipate corrosion's unexpected behavior, most research relies on deterministic and probabilistic models. However, machine learning-based approaches are better suited to the complex and extensive nature of degraded oil and gas pipelines. Also, using machine learning to assess integrity is a new study field. As a result, the literature lacks a comprehensive evaluation of current research issues. This study's goal is to evaluate the current state of machine learning (methods, variables, and datasets) and propose future directions for practitioners and academics. Currently, machine learning techniques are favored for predicting the integrity of damaged oil and gas pipelines. ANN, SVM, and hybrid models outperform due to the combined strength of the constituent models. Given the benefits of both, most popular machine learning researchers favor hybrid models over standalone models. We found that most current research utilizes field data, simulation data, and experimental data, with field data being the most often used. Temperature, pH, pressure, and velocity are input characteristics that have been included in most studies, demonstrating their importance in corroded oil and gas pipeline integrity assessment. This study also identified research gaps and shortcomings such as data availability, accuracy, and validation. Finally, some future suggestions and recommendations are proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
64658应助qinghong采纳,获得10
1秒前
64658应助qinghong采纳,获得10
1秒前
下雨发布了新的文献求助10
2秒前
3秒前
毛毛完成签到,获得积分10
3秒前
科研通AI2S应助fairy采纳,获得10
3秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
勤恳完成签到,获得积分10
5秒前
6秒前
6秒前
Vyasa发布了新的文献求助10
10秒前
ballball233完成签到 ,获得积分10
11秒前
11秒前
AX完成签到,获得积分10
11秒前
fairy完成签到,获得积分10
12秒前
英姑应助忧郁的平安采纳,获得10
12秒前
优雅含莲完成签到 ,获得积分10
13秒前
pi完成签到 ,获得积分10
17秒前
17秒前
Oak完成签到 ,获得积分10
18秒前
稳重火龙果完成签到,获得积分20
18秒前
WTaMi完成签到 ,获得积分10
18秒前
19秒前
車侖完成签到 ,获得积分10
19秒前
20秒前
古月完成签到 ,获得积分10
21秒前
fairy发布了新的文献求助10
21秒前
xdy完成签到 ,获得积分10
23秒前
洁净灭男完成签到,获得积分10
24秒前
balko完成签到,获得积分10
24秒前
坐下喝茶完成签到 ,获得积分10
28秒前
完美世界应助Slide采纳,获得10
28秒前
30秒前
30秒前
31秒前
Carol完成签到,获得积分10
36秒前
坐标完成签到,获得积分20
36秒前
cy发布了新的文献求助10
37秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961032
求助须知:如何正确求助?哪些是违规求助? 3507273
关于积分的说明 11135142
捐赠科研通 3239686
什么是DOI,文献DOI怎么找? 1790338
邀请新用户注册赠送积分活动 872359
科研通“疑难数据库(出版商)”最低求助积分说明 803150