Integrity assessment of corroded oil and gas pipelines using machine learning: A systematic review

管道运输 机器学习 管道(软件) 支持向量机 概率逻辑 领域(数学) 诚信管理 人工智能 计算机科学 电流(流体) 石油工程 工程类 数据挖掘 机械工程 数学 纯数学 电气工程
作者
Afzal Ahmed Soomro,Ainul Akmar Mokhtar,Jundika C. Kurnia,Najeebullah Lashari,Huimin Lu,Chico Sambo
出处
期刊:Engineering Failure Analysis [Elsevier]
卷期号:131: 105810-105810 被引量:128
标识
DOI:10.1016/j.engfailanal.2021.105810
摘要

Abstract Hydrocarbon fluid integrity evaluation in oil and gas pipelines is important for anticipating HSE measures. Ignoring corrosion is unavoidable and may have severe personal, economic, and environmental consequences. To anticipate corrosion's unexpected behavior, most research relies on deterministic and probabilistic models. However, machine learning-based approaches are better suited to the complex and extensive nature of degraded oil and gas pipelines. Also, using machine learning to assess integrity is a new study field. As a result, the literature lacks a comprehensive evaluation of current research issues. This study's goal is to evaluate the current state of machine learning (methods, variables, and datasets) and propose future directions for practitioners and academics. Currently, machine learning techniques are favored for predicting the integrity of damaged oil and gas pipelines. ANN, SVM, and hybrid models outperform due to the combined strength of the constituent models. Given the benefits of both, most popular machine learning researchers favor hybrid models over standalone models. We found that most current research utilizes field data, simulation data, and experimental data, with field data being the most often used. Temperature, pH, pressure, and velocity are input characteristics that have been included in most studies, demonstrating their importance in corroded oil and gas pipeline integrity assessment. This study also identified research gaps and shortcomings such as data availability, accuracy, and validation. Finally, some future suggestions and recommendations are proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
半山完成签到,获得积分10
1秒前
LX完成签到,获得积分10
3秒前
aku30完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
xiaodusb完成签到,获得积分10
5秒前
稳重的蛟凤应助gougou采纳,获得10
6秒前
少盐完成签到,获得积分10
7秒前
10秒前
jian94完成签到,获得积分10
11秒前
咩咩发布了新的文献求助10
12秒前
Tin完成签到,获得积分10
13秒前
单小芫完成签到 ,获得积分10
13秒前
逍遥子完成签到,获得积分10
14秒前
GHL完成签到,获得积分10
15秒前
魁梧的海秋完成签到,获得积分10
16秒前
JamesPei应助spinon采纳,获得10
16秒前
深情的楷瑞完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
18秒前
南攻完成签到,获得积分10
20秒前
Wsyyy完成签到 ,获得积分10
20秒前
万能图书馆应助蔷薇采纳,获得20
20秒前
锂离子完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
21秒前
忐忑的草丛完成签到,获得积分10
23秒前
鱼贝贝完成签到,获得积分10
24秒前
24秒前
sss完成签到,获得积分10
24秒前
尤瑟夫完成签到 ,获得积分10
24秒前
25秒前
赖氨酸完成签到,获得积分10
26秒前
27秒前
星辰发布了新的文献求助10
30秒前
gougou发布了新的文献求助10
30秒前
32秒前
32秒前
科研韭菜完成签到 ,获得积分10
34秒前
桥豆麻袋完成签到,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715621
求助须知:如何正确求助?哪些是违规求助? 5235764
关于积分的说明 15274658
捐赠科研通 4866353
什么是DOI,文献DOI怎么找? 2612926
邀请新用户注册赠送积分活动 1563081
关于科研通互助平台的介绍 1520565