Integrity assessment of corroded oil and gas pipelines using machine learning: A systematic review

管道运输 机器学习 管道(软件) 支持向量机 概率逻辑 领域(数学) 诚信管理 人工智能 计算机科学 电流(流体) 石油工程 工程类 数据挖掘 机械工程 数学 纯数学 电气工程
作者
Afzal Ahmed Soomro,Ainul Akmar Mokhtar,Jundika C. Kurnia,Najeebullah Lashari,Huimin Lu,Chico Sambo
出处
期刊:Engineering Failure Analysis [Elsevier]
卷期号:131: 105810-105810 被引量:128
标识
DOI:10.1016/j.engfailanal.2021.105810
摘要

Abstract Hydrocarbon fluid integrity evaluation in oil and gas pipelines is important for anticipating HSE measures. Ignoring corrosion is unavoidable and may have severe personal, economic, and environmental consequences. To anticipate corrosion's unexpected behavior, most research relies on deterministic and probabilistic models. However, machine learning-based approaches are better suited to the complex and extensive nature of degraded oil and gas pipelines. Also, using machine learning to assess integrity is a new study field. As a result, the literature lacks a comprehensive evaluation of current research issues. This study's goal is to evaluate the current state of machine learning (methods, variables, and datasets) and propose future directions for practitioners and academics. Currently, machine learning techniques are favored for predicting the integrity of damaged oil and gas pipelines. ANN, SVM, and hybrid models outperform due to the combined strength of the constituent models. Given the benefits of both, most popular machine learning researchers favor hybrid models over standalone models. We found that most current research utilizes field data, simulation data, and experimental data, with field data being the most often used. Temperature, pH, pressure, and velocity are input characteristics that have been included in most studies, demonstrating their importance in corroded oil and gas pipeline integrity assessment. This study also identified research gaps and shortcomings such as data availability, accuracy, and validation. Finally, some future suggestions and recommendations are proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
serein完成签到,获得积分10
2秒前
bjbmtxy应助357采纳,获得10
2秒前
2秒前
古藤完成签到 ,获得积分10
3秒前
一秋发布了新的文献求助10
5秒前
雪山飞龙发布了新的文献求助10
5秒前
yan发布了新的文献求助10
5秒前
6秒前
搜集达人应助司空凡采纳,获得10
6秒前
奶桃七七发布了新的文献求助10
6秒前
opq2001发布了新的文献求助30
7秒前
丰富的泥猴桃完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
乐乐应助未央采纳,获得10
11秒前
小于发布了新的文献求助10
11秒前
liuj完成签到,获得积分10
12秒前
脑洞疼应助seedcui采纳,获得10
13秒前
大个应助CDreamY采纳,获得10
13秒前
大模型应助lengchitu采纳,获得10
14秒前
xuhang完成签到,获得积分10
14秒前
15秒前
15秒前
16秒前
16秒前
yan完成签到,获得积分10
16秒前
16秒前
张巨锋完成签到,获得积分10
18秒前
小马甲应助我叫胖子采纳,获得10
19秒前
春风发布了新的文献求助10
19秒前
没有锁骨的丑丑完成签到,获得积分10
20秒前
20秒前
无情的rr发布了新的文献求助10
20秒前
小刘完成签到,获得积分10
21秒前
21秒前
CipherSage应助啦啦啦采纳,获得10
22秒前
Estelle完成签到 ,获得积分10
22秒前
lm发布了新的文献求助10
22秒前
司空凡发布了新的文献求助10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537102
求助须知:如何正确求助?哪些是违规求助? 4624693
关于积分的说明 14592890
捐赠科研通 4565218
什么是DOI,文献DOI怎么找? 2502220
邀请新用户注册赠送积分活动 1480944
关于科研通互助平台的介绍 1452123