Integrity assessment of corroded oil and gas pipelines using machine learning: A systematic review

管道运输 机器学习 管道(软件) 支持向量机 概率逻辑 领域(数学) 诚信管理 人工智能 计算机科学 电流(流体) 石油工程 工程类 风险分析(工程)
作者
Afzal Ahmed Soomro,Ainul Akmar Mokhtar,Jundika Chandra Kurnia,Najeebullah Lashari,Huimin Lu,Chico Sambo
出处
期刊:Engineering Failure Analysis [Elsevier BV]
卷期号:131: 105810- 被引量:3
标识
DOI:10.1016/j.engfailanal.2021.105810
摘要

Abstract Hydrocarbon fluid integrity evaluation in oil and gas pipelines is important for anticipating HSE measures. Ignoring corrosion is unavoidable and may have severe personal, economic, and environmental consequences. To anticipate corrosion's unexpected behavior, most research relies on deterministic and probabilistic models. However, machine learning-based approaches are better suited to the complex and extensive nature of degraded oil and gas pipelines. Also, using machine learning to assess integrity is a new study field. As a result, the literature lacks a comprehensive evaluation of current research issues. This study's goal is to evaluate the current state of machine learning (methods, variables, and datasets) and propose future directions for practitioners and academics. Currently, machine learning techniques are favored for predicting the integrity of damaged oil and gas pipelines. ANN, SVM, and hybrid models outperform due to the combined strength of the constituent models. Given the benefits of both, most popular machine learning researchers favor hybrid models over standalone models. We found that most current research utilizes field data, simulation data, and experimental data, with field data being the most often used. Temperature, pH, pressure, and velocity are input characteristics that have been included in most studies, demonstrating their importance in corroded oil and gas pipeline integrity assessment. This study also identified research gaps and shortcomings such as data availability, accuracy, and validation. Finally, some future suggestions and recommendations are proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助火星上大白菜采纳,获得10
刚刚
zhang完成签到,获得积分10
刚刚
2秒前
supwow发布了新的文献求助20
2秒前
2秒前
槿荣完成签到,获得积分10
2秒前
2秒前
动听千风发布了新的文献求助10
3秒前
momo完成签到,获得积分10
3秒前
小龙虾完成签到,获得积分10
3秒前
科研通AI6应助tinghai86采纳,获得10
3秒前
段段发布了新的文献求助10
4秒前
4秒前
4秒前
tuyfytjt完成签到,获得积分20
4秒前
liu完成签到,获得积分20
4秒前
4秒前
lyy发布了新的文献求助10
4秒前
星夜吹笛牛上完成签到,获得积分10
4秒前
滑腻腻的小鱼完成签到,获得积分10
5秒前
DijiaXu应助畅快焦采纳,获得10
5秒前
5秒前
xxx发布了新的文献求助10
6秒前
Sheart发布了新的文献求助10
7秒前
非哲发布了新的文献求助10
7秒前
翁怜晴发布了新的文献求助10
8秒前
yuan完成签到,获得积分10
8秒前
ldy发布了新的文献求助10
8秒前
田様应助Auh采纳,获得10
8秒前
9秒前
9秒前
搜集达人应助JABBA采纳,获得10
9秒前
宁宁完成签到,获得积分10
9秒前
bkagyin应助qwe采纳,获得10
9秒前
liu发布了新的文献求助10
9秒前
XiaoLiu应助Lee采纳,获得10
10秒前
10秒前
ydx发布了新的文献求助10
11秒前
11秒前
Akim应助yu采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576354
求助须知:如何正确求助?哪些是违规求助? 3995613
关于积分的说明 12369373
捐赠科研通 3669547
什么是DOI,文献DOI怎么找? 2022294
邀请新用户注册赠送积分活动 1056342
科研通“疑难数据库(出版商)”最低求助积分说明 943562