Integrity assessment of corroded oil and gas pipelines using machine learning: A systematic review

管道运输 机器学习 管道(软件) 支持向量机 概率逻辑 领域(数学) 诚信管理 人工智能 计算机科学 电流(流体) 石油工程 工程类 数据挖掘 机械工程 数学 纯数学 电气工程
作者
Afzal Ahmed Soomro,Ainul Akmar Mokhtar,Jundika C. Kurnia,Najeebullah Lashari,Huimin Lu,Chico Sambo
出处
期刊:Engineering Failure Analysis [Elsevier]
卷期号:131: 105810-105810 被引量:128
标识
DOI:10.1016/j.engfailanal.2021.105810
摘要

Abstract Hydrocarbon fluid integrity evaluation in oil and gas pipelines is important for anticipating HSE measures. Ignoring corrosion is unavoidable and may have severe personal, economic, and environmental consequences. To anticipate corrosion's unexpected behavior, most research relies on deterministic and probabilistic models. However, machine learning-based approaches are better suited to the complex and extensive nature of degraded oil and gas pipelines. Also, using machine learning to assess integrity is a new study field. As a result, the literature lacks a comprehensive evaluation of current research issues. This study's goal is to evaluate the current state of machine learning (methods, variables, and datasets) and propose future directions for practitioners and academics. Currently, machine learning techniques are favored for predicting the integrity of damaged oil and gas pipelines. ANN, SVM, and hybrid models outperform due to the combined strength of the constituent models. Given the benefits of both, most popular machine learning researchers favor hybrid models over standalone models. We found that most current research utilizes field data, simulation data, and experimental data, with field data being the most often used. Temperature, pH, pressure, and velocity are input characteristics that have been included in most studies, demonstrating their importance in corroded oil and gas pipeline integrity assessment. This study also identified research gaps and shortcomings such as data availability, accuracy, and validation. Finally, some future suggestions and recommendations are proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WX完成签到,获得积分10
刚刚
yu发布了新的文献求助10
刚刚
小文cremen发布了新的文献求助10
1秒前
无私的书翠完成签到,获得积分10
1秒前
Sunflower完成签到 ,获得积分10
1秒前
HLT完成签到,获得积分10
1秒前
TJH完成签到,获得积分10
1秒前
yang完成签到,获得积分10
1秒前
Mae完成签到 ,获得积分10
2秒前
vvvvvv完成签到,获得积分10
2秒前
天天快乐完成签到,获得积分10
2秒前
2秒前
翟庆春发布了新的文献求助10
2秒前
2秒前
是菜团子呀完成签到 ,获得积分10
3秒前
医学生Mavis完成签到,获得积分10
3秒前
诸觅双完成签到 ,获得积分10
3秒前
3秒前
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
dc完成签到,获得积分10
4秒前
4秒前
SciGPT应助木木采纳,获得10
5秒前
Doctor完成签到,获得积分10
5秒前
5秒前
LV发布了新的文献求助10
5秒前
Wayne完成签到,获得积分10
5秒前
万能图书馆应助陈慕枫采纳,获得10
5秒前
6秒前
DDD完成签到,获得积分10
6秒前
6秒前
悦耳盼海完成签到,获得积分10
7秒前
爪人猫完成签到,获得积分10
7秒前
逝水无痕发布了新的文献求助10
8秒前
petrichor完成签到,获得积分10
8秒前
闪闪凝梦完成签到 ,获得积分10
8秒前
CodeCraft应助Faceman采纳,获得10
8秒前
lyk2815完成签到,获得积分10
8秒前
飞奔小子发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997