Integrity assessment of corroded oil and gas pipelines using machine learning: A systematic review

管道运输 机器学习 管道(软件) 支持向量机 概率逻辑 领域(数学) 诚信管理 人工智能 计算机科学 电流(流体) 石油工程 工程类 数据挖掘 机械工程 数学 纯数学 电气工程
作者
Afzal Ahmed Soomro,Ainul Akmar Mokhtar,Jundika C. Kurnia,Najeebullah Lashari,Huimin Lu,Chico Sambo
出处
期刊:Engineering Failure Analysis [Elsevier]
卷期号:131: 105810-105810 被引量:128
标识
DOI:10.1016/j.engfailanal.2021.105810
摘要

Abstract Hydrocarbon fluid integrity evaluation in oil and gas pipelines is important for anticipating HSE measures. Ignoring corrosion is unavoidable and may have severe personal, economic, and environmental consequences. To anticipate corrosion's unexpected behavior, most research relies on deterministic and probabilistic models. However, machine learning-based approaches are better suited to the complex and extensive nature of degraded oil and gas pipelines. Also, using machine learning to assess integrity is a new study field. As a result, the literature lacks a comprehensive evaluation of current research issues. This study's goal is to evaluate the current state of machine learning (methods, variables, and datasets) and propose future directions for practitioners and academics. Currently, machine learning techniques are favored for predicting the integrity of damaged oil and gas pipelines. ANN, SVM, and hybrid models outperform due to the combined strength of the constituent models. Given the benefits of both, most popular machine learning researchers favor hybrid models over standalone models. We found that most current research utilizes field data, simulation data, and experimental data, with field data being the most often used. Temperature, pH, pressure, and velocity are input characteristics that have been included in most studies, demonstrating their importance in corroded oil and gas pipeline integrity assessment. This study also identified research gaps and shortcomings such as data availability, accuracy, and validation. Finally, some future suggestions and recommendations are proposed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
岳红健发布了新的文献求助10
刚刚
july九月发布了新的文献求助10
1秒前
1秒前
酷波er应助西瓜采纳,获得10
2秒前
2秒前
生动友容发布了新的文献求助10
3秒前
林林宁宁完成签到 ,获得积分10
5秒前
大胆曼岚发布了新的文献求助10
5秒前
丘比特应助林佳一采纳,获得10
6秒前
6秒前
小七应助马马马采纳,获得30
7秒前
RR发布了新的文献求助10
7秒前
TT完成签到,获得积分20
7秒前
7秒前
杨金城完成签到,获得积分10
8秒前
科研公主完成签到,获得积分10
8秒前
9秒前
10秒前
Jack80发布了新的文献求助30
10秒前
大模型应助危机的雪旋采纳,获得10
11秒前
Xavier发布了新的文献求助10
11秒前
从容的丹南完成签到 ,获得积分10
12秒前
zzz发布了新的文献求助10
12秒前
充电宝应助organicboy采纳,获得10
12秒前
12秒前
NexusExplorer应助岳红健采纳,获得10
12秒前
壮观砖家发布了新的文献求助20
14秒前
怕孤单应助个qwieid采纳,获得10
15秒前
15秒前
15秒前
Wang发布了新的文献求助30
15秒前
16秒前
Lynn怯霜静发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
17秒前
jun发布了新的文献求助10
17秒前
晨雾关注了科研通微信公众号
18秒前
苏小狸完成签到,获得积分10
18秒前
18秒前
yaoli0823完成签到,获得积分10
18秒前
辛勤愚志完成签到 ,获得积分10
19秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620797
求助须知:如何正确求助?哪些是违规求助? 4705375
关于积分的说明 14931806
捐赠科研通 4763300
什么是DOI,文献DOI怎么找? 2551231
邀请新用户注册赠送积分活动 1513783
关于科研通互助平台的介绍 1474672