Improved deep learning based telemetry data anomaly detection to enhance spacecraft operation reliability

航天器 遥测 异常检测 计算机科学 可靠性(半导体) 水准点(测量) 异常(物理) 实时计算 卫星 遥感 航空航天工程 工程类 人工智能 物理 电信 地理 大地测量学 功率(物理) 凝聚态物理 量子力学
作者
Lin Yang,Yong Ma,Feng Zeng,Xiyuan Peng,Daosheng Liu
出处
期刊:Microelectronics Reliability [Elsevier BV]
卷期号:126: 114311-114311 被引量:21
标识
DOI:10.1016/j.microrel.2021.114311
摘要

Spacecraft is a complex system integrating a large number of electronic components and payloads. During the in-orbit operation, abnormal events often occur due to the influences of space environment, performance degradation and other factors. These anomalies affect the operational reliability of spacecraft system in orbit. The telemetry data of spacecraft is the main basis to determine its in-orbit state. Data-driven telemetry data anomaly detection method can timely detect the abnormal state of spacecraft system, which provide reference for ground maintenance and ensure the safety and reliability of operation as well as the spacecraft itself. This paper proposes an improved deep learning based anomaly detection method for the anomaly detection of spacecraft telemetry data. Especially, the highly nonlinear modeling and predicting ability of Long Short-Term Memory (LSTM) networks are combined with multi-scale anomaly detection strategy to increase the detection performance. The effectiveness of the proposed method is verified using the NASA benchmark spacecraft data and the hydrogen clock data of the Beidou Navigation Satellite.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ly发布了新的文献求助10
刚刚
1秒前
xiang完成签到,获得积分10
1秒前
李爱国应助迷恋采纳,获得10
1秒前
在摆烂的dog完成签到,获得积分10
2秒前
星辰大海应助刘源采纳,获得10
2秒前
小巫完成签到,获得积分10
3秒前
ironsilica完成签到,获得积分10
3秒前
土豪的土豆完成签到 ,获得积分10
3秒前
orixero应助风趣的鸡翅采纳,获得10
4秒前
独步旋碟发布了新的文献求助10
4秒前
prime完成签到,获得积分10
4秒前
李木子完成签到 ,获得积分10
4秒前
4秒前
林登万完成签到,获得积分10
4秒前
hj木秀于林完成签到,获得积分10
4秒前
6秒前
风华正茂发布了新的文献求助10
6秒前
6秒前
SOO应助sx采纳,获得10
7秒前
Superman完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
916应助科研通管家采纳,获得10
10秒前
坦率的匪应助科研通管家采纳,获得10
10秒前
十二应助科研通管家采纳,获得10
10秒前
yar应助科研通管家采纳,获得10
10秒前
916应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
916应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
10秒前
musejie应助科研通管家采纳,获得10
10秒前
916应助科研通管家采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得30
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
田様应助科研通管家采纳,获得10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650