Implementing Machine Learning in Laboratory Synthesis by Hybrid of SVR Model and Optimization Algorithms

粒子群优化 稳健性(进化) 矫顽力 支持向量机 残余物 磁性 算法 计算机科学 机器学习 遗传算法 人工智能 材料科学 化学 物理 生物化学 量子力学 基因 凝聚态物理
作者
Tolou Pourashraf,Saeid Shokri,Mohammad Yousefi,Abbas Ahmadi,Parviz Aberoomand Azar
出处
期刊:Advanced theory and simulations [Wiley]
卷期号:4 (11) 被引量:5
标识
DOI:10.1002/adts.202100225
摘要

Abstract Numerous studies have been performed to modify ferrites to achieve the desired magnetic properties for the intended applications. Many variables with interactions between themselves are involved in modifying these properties. This study aims to provide an accurate and effective method for predicting the magnetic properties of M‐type ferrites under the influence of involved variables. For this purpose, ferrites are synthesized by doping 17 different ions and the results of the analysis of samples form the experimental data. The support vector regression (SVR) model is selected for prediction and in order to optimize hyper parameters, genetic, particle swarm optimization, and sequential minimal optimization techniques are used. Based on the comparison between the outcomes of these algorithms, the model with the best performance is used to predict coercivity and residual magnetism in M‐type magnetic ferrites. Furthermore, with the cross validation technique, the accuracy and robustness of the model designed for new samples are evaluated. The results show that the selected SVR model, with an average absolute relative error of 2% and 0.7%, is able to predict coercivity and residual magnetism, respectively. Consequently, the prediction method presented has the capability to accelerate and develop the modification of magnetic properties for different applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
午马未羊完成签到,获得积分10
刚刚
2秒前
2秒前
2秒前
2秒前
3秒前
勇勇完成签到,获得积分10
4秒前
LF9979完成签到,获得积分20
5秒前
空白完成签到,获得积分10
6秒前
FashionBoy应助安于此生采纳,获得10
7秒前
木棉发布了新的文献求助10
8秒前
9秒前
ouyangshi发布了新的文献求助10
9秒前
Dr_Stars完成签到,获得积分10
9秒前
10秒前
diraczh完成签到,获得积分10
10秒前
午马未羊发布了新的文献求助30
10秒前
11秒前
13秒前
缓慢的灵枫完成签到,获得积分10
13秒前
Ava应助舒适的衣采纳,获得10
14秒前
rainbow完成签到,获得积分10
14秒前
菠萝菠萝哒应助kaikai采纳,获得10
14秒前
Karol驳回了Apei应助
16秒前
研友_VZG7GZ应助ZQP采纳,获得10
16秒前
大辉完成签到 ,获得积分10
17秒前
吃饭饭发布了新的文献求助10
18秒前
rainbow发布了新的文献求助10
20秒前
ouyangshi完成签到,获得积分10
20秒前
思源应助可可采纳,获得10
21秒前
魁梧的鲂完成签到,获得积分10
21秒前
阡陌完成签到 ,获得积分10
22秒前
22秒前
shasha完成签到,获得积分10
22秒前
大模型应助jinl9587采纳,获得10
24秒前
drtianyunhong发布了新的文献求助10
25秒前
情怀应助lshl2000采纳,获得10
26秒前
Ava应助林洛沁采纳,获得10
27秒前
hyl完成签到,获得积分10
27秒前
领导范儿应助开心岩采纳,获得10
29秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313931
求助须知:如何正确求助?哪些是违规求助? 2946299
关于积分的说明 8529491
捐赠科研通 2621940
什么是DOI,文献DOI怎么找? 1434230
科研通“疑难数据库(出版商)”最低求助积分说明 665175
邀请新用户注册赠送积分活动 650738