Implementing Machine Learning in Laboratory Synthesis by Hybrid of SVR Model and Optimization Algorithms

粒子群优化 稳健性(进化) 矫顽力 支持向量机 残余物 磁性 算法 计算机科学 机器学习 遗传算法 人工智能 材料科学 化学 物理 生物化学 量子力学 基因 凝聚态物理
作者
Tolou Pourashraf,Saeid Shokri,Mohammad Yousefi,Abbas Ahmadi,Parviz Aberoomand Azar
出处
期刊:Advanced theory and simulations [Wiley]
卷期号:4 (11) 被引量:5
标识
DOI:10.1002/adts.202100225
摘要

Abstract Numerous studies have been performed to modify ferrites to achieve the desired magnetic properties for the intended applications. Many variables with interactions between themselves are involved in modifying these properties. This study aims to provide an accurate and effective method for predicting the magnetic properties of M‐type ferrites under the influence of involved variables. For this purpose, ferrites are synthesized by doping 17 different ions and the results of the analysis of samples form the experimental data. The support vector regression (SVR) model is selected for prediction and in order to optimize hyper parameters, genetic, particle swarm optimization, and sequential minimal optimization techniques are used. Based on the comparison between the outcomes of these algorithms, the model with the best performance is used to predict coercivity and residual magnetism in M‐type magnetic ferrites. Furthermore, with the cross validation technique, the accuracy and robustness of the model designed for new samples are evaluated. The results show that the selected SVR model, with an average absolute relative error of 2% and 0.7%, is able to predict coercivity and residual magnetism, respectively. Consequently, the prediction method presented has the capability to accelerate and develop the modification of magnetic properties for different applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
youngga07完成签到,获得积分10
刚刚
善学以致用应助橙子采纳,获得10
1秒前
nidejun发布了新的文献求助10
1秒前
潇洒的平松完成签到,获得积分10
1秒前
3秒前
Tink完成签到,获得积分10
4秒前
4秒前
5秒前
滴滴哒完成签到,获得积分10
6秒前
YOLO完成签到,获得积分10
7秒前
7秒前
Yolo完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
呢喃Dora发布了新的文献求助10
10秒前
黑YA完成签到,获得积分20
11秒前
hsialy发布了新的文献求助10
12秒前
JamesPei应助Wayne_Sun采纳,获得10
13秒前
13秒前
梨涡远点完成签到,获得积分10
13秒前
Fengliguantou发布了新的文献求助10
13秒前
14秒前
研友_LJGpan完成签到,获得积分10
14秒前
黑YA发布了新的文献求助10
14秒前
皮崇知发布了新的文献求助10
15秒前
Jackson发布了新的文献求助100
15秒前
复杂函完成签到,获得积分10
15秒前
lu发布了新的文献求助10
15秒前
JamesPei应助kmo采纳,获得30
17秒前
贪玩老姆完成签到 ,获得积分10
19秒前
21秒前
拼搏听寒发布了新的文献求助10
22秒前
22秒前
隐形曼青应助科研通管家采纳,获得10
22秒前
田様应助科研通管家采纳,获得10
22秒前
千跃应助科研通管家采纳,获得10
22秒前
JamesPei应助科研通管家采纳,获得10
22秒前
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959477
求助须知:如何正确求助?哪些是违规求助? 3505697
关于积分的说明 11125320
捐赠科研通 3237538
什么是DOI,文献DOI怎么找? 1789202
邀请新用户注册赠送积分活动 871583
科研通“疑难数据库(出版商)”最低求助积分说明 802868