85 Integrating Mechanistic Models with AI for Precision Feeding of Sows

营养物 动物科学 垃圾箱 断奶 牧群 生产(经济) 数学 计算机科学 统计 农业科学 生物 生态学 经济 宏观经济学
作者
Charlotte Gaillard,Raphaël Gauthier,Jean-Yves Dourmad
出处
期刊:Journal of Animal Science [Oxford University Press]
卷期号:99 (Supplement_3): 42-42
标识
DOI:10.1093/jas/skab235.073
摘要

Abstract Conventional feeding for sows is usually based on the average herd’s nutrient requirements. Thus, sows can be under- or over- fed leading to extra feed costs and environmental losses. New technologies, as sensors and AI, bring opportunities to measure and integrate individual variability into nutrient requirements estimations. The objective is therefore to go towards precision feeding (PF) combining on-farm data as input for a dynamic nutritional model with smart feeders to provide individual and daily-adjusted rations. As a first step, a mechanistic model (InraPorc) was upgraded and applied to databases to calculate daily nutrient requirements at the individual scale for sows. For lactating sows, it highlighted that milk production and appetite influenced the amount and composition of the optimal ration to be fed to each sow. For gestating sows, it showed that parity, gestation stage, and activity level influenced nutrient requirements. The second step was to develop algorithms to predict the parameters of interest defined in the first step and not measured daily on-farm. For lactating sows, feed intake and litter weight at weaning (as proxy for milk production) were accurately predicted using supervised methods: respectively, clustering k-shape and a linear regression. For gestating sows, an algorithm is being developed to identify individual activities via video recordings. The third step is to test on farm the decision support systems (DSS) composed of the models and algorithms. An interface allows the link between the DSS and the feeders, and another allows the farmers to enter observational data. During on-farm trials, nitrogen and phosphorus excretions as well as feed costs were reduced for sows fed with PF compared to sows fed a conventional diet. To conclude, AI allows mechanistic models and algorithms to be integrated on farm for sows for an on real-time individual adjustment of the nutrient supply.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灵巧的朝雪完成签到,获得积分10
刚刚
格子发布了新的文献求助10
刚刚
刚刚
1秒前
唐小糖发布了新的文献求助10
1秒前
欧欧欧导发布了新的文献求助10
1秒前
1秒前
1秒前
wwtt完成签到 ,获得积分10
2秒前
11关注了科研通微信公众号
2秒前
星辰发布了新的文献求助10
2秒前
江睿曦发布了新的文献求助10
3秒前
自觉大门完成签到,获得积分10
3秒前
1111111发布了新的文献求助10
4秒前
硝基发布了新的文献求助10
4秒前
llxiaomianyang完成签到,获得积分10
4秒前
SWJ发布了新的文献求助10
4秒前
甄昕完成签到,获得积分10
5秒前
雨筠发布了新的文献求助10
5秒前
5秒前
科研通AI6应助顺利的源智采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
聪明萤发布了新的文献求助10
5秒前
思源应助徐徐科研一百分采纳,获得10
6秒前
淡淡土豆应助Wendy采纳,获得10
6秒前
7秒前
7秒前
CipherSage应助微笑惜海采纳,获得10
7秒前
7秒前
欧欧欧导完成签到,获得积分10
7秒前
合适夜柳完成签到 ,获得积分10
8秒前
哇哈哈哈发布了新的文献求助20
8秒前
花卷发布了新的文献求助30
8秒前
闪闪的鹏博完成签到,获得积分10
8秒前
格子完成签到,获得积分10
8秒前
等等完成签到,获得积分10
9秒前
江睿曦完成签到,获得积分10
9秒前
student完成签到,获得积分10
9秒前
sxk完成签到,获得积分10
10秒前
李爱国应助tang61采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5510526
求助须知:如何正确求助?哪些是违规求助? 4605168
关于积分的说明 14493221
捐赠科研通 4540370
什么是DOI,文献DOI怎么找? 2487953
邀请新用户注册赠送积分活动 1470219
关于科研通互助平台的介绍 1442645