85 Integrating Mechanistic Models with AI for Precision Feeding of Sows

营养物 动物科学 垃圾箱 断奶 牧群 生产(经济) 数学 计算机科学 统计 农业科学 生物 生态学 宏观经济学 经济
作者
Charlotte Gaillard,Raphaël Gauthier,Jean-Yves Dourmad
出处
期刊:Journal of Animal Science [Oxford University Press]
卷期号:99 (Supplement_3): 42-42
标识
DOI:10.1093/jas/skab235.073
摘要

Abstract Conventional feeding for sows is usually based on the average herd’s nutrient requirements. Thus, sows can be under- or over- fed leading to extra feed costs and environmental losses. New technologies, as sensors and AI, bring opportunities to measure and integrate individual variability into nutrient requirements estimations. The objective is therefore to go towards precision feeding (PF) combining on-farm data as input for a dynamic nutritional model with smart feeders to provide individual and daily-adjusted rations. As a first step, a mechanistic model (InraPorc) was upgraded and applied to databases to calculate daily nutrient requirements at the individual scale for sows. For lactating sows, it highlighted that milk production and appetite influenced the amount and composition of the optimal ration to be fed to each sow. For gestating sows, it showed that parity, gestation stage, and activity level influenced nutrient requirements. The second step was to develop algorithms to predict the parameters of interest defined in the first step and not measured daily on-farm. For lactating sows, feed intake and litter weight at weaning (as proxy for milk production) were accurately predicted using supervised methods: respectively, clustering k-shape and a linear regression. For gestating sows, an algorithm is being developed to identify individual activities via video recordings. The third step is to test on farm the decision support systems (DSS) composed of the models and algorithms. An interface allows the link between the DSS and the feeders, and another allows the farmers to enter observational data. During on-farm trials, nitrogen and phosphorus excretions as well as feed costs were reduced for sows fed with PF compared to sows fed a conventional diet. To conclude, AI allows mechanistic models and algorithms to be integrated on farm for sows for an on real-time individual adjustment of the nutrient supply.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
一一应助stronging采纳,获得20
1秒前
可爱的函函应助pepe采纳,获得10
2秒前
和光同尘发布了新的文献求助10
2秒前
3秒前
3秒前
怕黑天与发布了新的文献求助10
3秒前
kkk完成签到 ,获得积分10
4秒前
4秒前
万幸鹿发布了新的文献求助10
4秒前
5秒前
受伤雁荷发布了新的文献求助10
5秒前
immunity发布了新的文献求助10
6秒前
安详跳跳糖完成签到,获得积分10
7秒前
wbb发布了新的文献求助10
8秒前
健壮小蔷薇完成签到,获得积分10
8秒前
慕青应助专注的远山采纳,获得10
9秒前
和光同尘完成签到,获得积分10
9秒前
希望天下0贩的0应助黄俊采纳,获得10
9秒前
cyq发布了新的文献求助10
10秒前
10秒前
libai完成签到,获得积分10
11秒前
klay完成签到,获得积分10
12秒前
麦当劳薯条冰激凌完成签到,获得积分10
13秒前
13秒前
Orange应助lulu采纳,获得10
13秒前
情怀应助大方的涟妖采纳,获得20
13秒前
受伤雁荷完成签到,获得积分20
14秒前
15秒前
文献文献文献完成签到,获得积分10
15秒前
16秒前
123完成签到,获得积分10
16秒前
BBB发布了新的文献求助10
16秒前
CipherSage应助wbb采纳,获得10
17秒前
cjx发布了新的文献求助10
17秒前
柏小博完成签到,获得积分10
17秒前
18秒前
18秒前
19秒前
19秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129618
求助须知:如何正确求助?哪些是违规求助? 2780387
关于积分的说明 7747813
捐赠科研通 2435722
什么是DOI,文献DOI怎么找? 1294230
科研通“疑难数据库(出版商)”最低求助积分说明 623601
版权声明 600570