亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

85 Integrating Mechanistic Models with AI for Precision Feeding of Sows

营养物 动物科学 垃圾箱 断奶 牧群 生产(经济) 数学 计算机科学 统计 农业科学 生物 生态学 宏观经济学 经济
作者
Charlotte Gaillard,Raphaël Gauthier,Jean-Yves Dourmad
出处
期刊:Journal of Animal Science [Oxford University Press]
卷期号:99 (Supplement_3): 42-42
标识
DOI:10.1093/jas/skab235.073
摘要

Abstract Conventional feeding for sows is usually based on the average herd’s nutrient requirements. Thus, sows can be under- or over- fed leading to extra feed costs and environmental losses. New technologies, as sensors and AI, bring opportunities to measure and integrate individual variability into nutrient requirements estimations. The objective is therefore to go towards precision feeding (PF) combining on-farm data as input for a dynamic nutritional model with smart feeders to provide individual and daily-adjusted rations. As a first step, a mechanistic model (InraPorc) was upgraded and applied to databases to calculate daily nutrient requirements at the individual scale for sows. For lactating sows, it highlighted that milk production and appetite influenced the amount and composition of the optimal ration to be fed to each sow. For gestating sows, it showed that parity, gestation stage, and activity level influenced nutrient requirements. The second step was to develop algorithms to predict the parameters of interest defined in the first step and not measured daily on-farm. For lactating sows, feed intake and litter weight at weaning (as proxy for milk production) were accurately predicted using supervised methods: respectively, clustering k-shape and a linear regression. For gestating sows, an algorithm is being developed to identify individual activities via video recordings. The third step is to test on farm the decision support systems (DSS) composed of the models and algorithms. An interface allows the link between the DSS and the feeders, and another allows the farmers to enter observational data. During on-farm trials, nitrogen and phosphorus excretions as well as feed costs were reduced for sows fed with PF compared to sows fed a conventional diet. To conclude, AI allows mechanistic models and algorithms to be integrated on farm for sows for an on real-time individual adjustment of the nutrient supply.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hgsgeospan完成签到,获得积分10
1秒前
直率的笑翠完成签到 ,获得积分10
8秒前
hgs完成签到,获得积分10
13秒前
13秒前
MchemG应助科研通管家采纳,获得10
34秒前
JamesPei应助科研通管家采纳,获得10
34秒前
隐形曼青应助科研通管家采纳,获得10
35秒前
Kevin完成签到,获得积分10
1分钟前
1分钟前
辉哥发布了新的文献求助10
1分钟前
1分钟前
1分钟前
董可以发布了新的文献求助10
1分钟前
英俊的铭应助董可以采纳,获得10
1分钟前
curtain完成签到,获得积分10
2分钟前
大个应助科研通管家采纳,获得10
2分钟前
MchemG应助科研通管家采纳,获得10
2分钟前
所所应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
落寞书易完成签到 ,获得积分10
2分钟前
2分钟前
现实的小霸王完成签到,获得积分10
2分钟前
3分钟前
Xw完成签到,获得积分10
3分钟前
科研通AI5应助迷人问兰采纳,获得10
3分钟前
Hello应助LSH970829采纳,获得10
3分钟前
Xw发布了新的文献求助10
3分钟前
寒冷的应助核桃采纳,获得30
4分钟前
wen发布了新的文献求助10
4分钟前
隐形曼青应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
MchemG应助科研通管家采纳,获得10
4分钟前
wen完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
yar应助wen采纳,获得10
4分钟前
核桃发布了新的文献求助30
4分钟前
迷人问兰发布了新的文献求助10
4分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990084
求助须知:如何正确求助?哪些是违规求助? 3532108
关于积分的说明 11256447
捐赠科研通 3271016
什么是DOI,文献DOI怎么找? 1805171
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809228