已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

85 Integrating Mechanistic Models with AI for Precision Feeding of Sows

营养物 动物科学 垃圾箱 断奶 牧群 生产(经济) 数学 计算机科学 统计 农业科学 生物 生态学 宏观经济学 经济
作者
Charlotte Gaillard,Raphaël Gauthier,Jean-Yves Dourmad
出处
期刊:Journal of Animal Science [Oxford University Press]
卷期号:99 (Supplement_3): 42-42
标识
DOI:10.1093/jas/skab235.073
摘要

Abstract Conventional feeding for sows is usually based on the average herd’s nutrient requirements. Thus, sows can be under- or over- fed leading to extra feed costs and environmental losses. New technologies, as sensors and AI, bring opportunities to measure and integrate individual variability into nutrient requirements estimations. The objective is therefore to go towards precision feeding (PF) combining on-farm data as input for a dynamic nutritional model with smart feeders to provide individual and daily-adjusted rations. As a first step, a mechanistic model (InraPorc) was upgraded and applied to databases to calculate daily nutrient requirements at the individual scale for sows. For lactating sows, it highlighted that milk production and appetite influenced the amount and composition of the optimal ration to be fed to each sow. For gestating sows, it showed that parity, gestation stage, and activity level influenced nutrient requirements. The second step was to develop algorithms to predict the parameters of interest defined in the first step and not measured daily on-farm. For lactating sows, feed intake and litter weight at weaning (as proxy for milk production) were accurately predicted using supervised methods: respectively, clustering k-shape and a linear regression. For gestating sows, an algorithm is being developed to identify individual activities via video recordings. The third step is to test on farm the decision support systems (DSS) composed of the models and algorithms. An interface allows the link between the DSS and the feeders, and another allows the farmers to enter observational data. During on-farm trials, nitrogen and phosphorus excretions as well as feed costs were reduced for sows fed with PF compared to sows fed a conventional diet. To conclude, AI allows mechanistic models and algorithms to be integrated on farm for sows for an on real-time individual adjustment of the nutrient supply.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小张完成签到 ,获得积分10
刚刚
1秒前
dao发布了新的文献求助10
1秒前
Orange应助琳666采纳,获得10
2秒前
5秒前
星辰大海应助残剑月采纳,获得10
7秒前
小悦子发布了新的文献求助10
7秒前
8秒前
11秒前
Limerencia完成签到,获得积分10
12秒前
依依发布了新的文献求助10
13秒前
13秒前
dzjin发布了新的文献求助10
14秒前
吊炸天完成签到 ,获得积分10
15秒前
科研通AI6应助dao采纳,获得10
16秒前
glimmen发布了新的文献求助30
18秒前
小悦子完成签到,获得积分20
19秒前
20秒前
dzjin完成签到,获得积分10
23秒前
lulu发布了新的文献求助10
25秒前
吕德华完成签到,获得积分10
25秒前
Xinxin完成签到,获得积分10
27秒前
残剑月完成签到,获得积分10
28秒前
28秒前
慕青应助echooo采纳,获得10
28秒前
Ray完成签到 ,获得积分10
37秒前
39秒前
无私翎完成签到 ,获得积分10
40秒前
44秒前
一粟完成签到,获得积分10
45秒前
46秒前
机灵的衬衫完成签到 ,获得积分10
48秒前
西柚柠檬完成签到 ,获得积分10
52秒前
TingtingGZ发布了新的文献求助10
53秒前
蒋灵馨完成签到 ,获得积分10
54秒前
WYF关注了科研通微信公众号
54秒前
54秒前
coco发布了新的文献求助10
56秒前
56秒前
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4899809
求助须知:如何正确求助?哪些是违规求助? 4180088
关于积分的说明 12976236
捐赠科研通 3944390
什么是DOI,文献DOI怎么找? 2163710
邀请新用户注册赠送积分活动 1181992
关于科研通互助平台的介绍 1087807