85 Integrating Mechanistic Models with AI for Precision Feeding of Sows

营养物 动物科学 垃圾箱 断奶 牧群 生产(经济) 数学 计算机科学 统计 农业科学 生物 生态学 宏观经济学 经济
作者
Charlotte Gaillard,Raphaël Gauthier,Jean-Yves Dourmad
出处
期刊:Journal of Animal Science [Oxford University Press]
卷期号:99 (Supplement_3): 42-42
标识
DOI:10.1093/jas/skab235.073
摘要

Abstract Conventional feeding for sows is usually based on the average herd’s nutrient requirements. Thus, sows can be under- or over- fed leading to extra feed costs and environmental losses. New technologies, as sensors and AI, bring opportunities to measure and integrate individual variability into nutrient requirements estimations. The objective is therefore to go towards precision feeding (PF) combining on-farm data as input for a dynamic nutritional model with smart feeders to provide individual and daily-adjusted rations. As a first step, a mechanistic model (InraPorc) was upgraded and applied to databases to calculate daily nutrient requirements at the individual scale for sows. For lactating sows, it highlighted that milk production and appetite influenced the amount and composition of the optimal ration to be fed to each sow. For gestating sows, it showed that parity, gestation stage, and activity level influenced nutrient requirements. The second step was to develop algorithms to predict the parameters of interest defined in the first step and not measured daily on-farm. For lactating sows, feed intake and litter weight at weaning (as proxy for milk production) were accurately predicted using supervised methods: respectively, clustering k-shape and a linear regression. For gestating sows, an algorithm is being developed to identify individual activities via video recordings. The third step is to test on farm the decision support systems (DSS) composed of the models and algorithms. An interface allows the link between the DSS and the feeders, and another allows the farmers to enter observational data. During on-farm trials, nitrogen and phosphorus excretions as well as feed costs were reduced for sows fed with PF compared to sows fed a conventional diet. To conclude, AI allows mechanistic models and algorithms to be integrated on farm for sows for an on real-time individual adjustment of the nutrient supply.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灰太狼大王完成签到 ,获得积分10
刚刚
dl应助小狒狒采纳,获得10
1秒前
淡然语芙完成签到,获得积分10
1秒前
科研通AI6应助恒弟弟采纳,获得10
1秒前
顺毛大帝应助风趣的晓凡采纳,获得20
2秒前
2秒前
奇异完成签到 ,获得积分10
2秒前
天tian完成签到,获得积分10
3秒前
漠雨寒灯发布了新的文献求助10
3秒前
科研通AI2S应助沈星燃采纳,获得10
3秒前
汤汤完成签到,获得积分10
4秒前
5秒前
213完成签到,获得积分10
6秒前
6秒前
多毛巨兽完成签到 ,获得积分10
7秒前
Yuan发布了新的文献求助10
7秒前
开朗的慕儿完成签到,获得积分10
8秒前
10秒前
11秒前
11秒前
11秒前
潇涯完成签到 ,获得积分10
12秒前
13秒前
13秒前
xue完成签到,获得积分10
13秒前
谢佳冀完成签到,获得积分10
14秒前
耍酷延恶发布了新的文献求助10
14秒前
651发布了新的文献求助10
15秒前
16秒前
说话的月亮完成签到,获得积分10
16秒前
17秒前
17秒前
谢佳冀发布了新的文献求助10
18秒前
18秒前
Blummer完成签到,获得积分10
18秒前
杨德帅发布了新的文献求助10
19秒前
19秒前
王敬顺完成签到,获得积分0
19秒前
philister完成签到,获得积分10
21秒前
1953完成签到,获得积分10
22秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379532
求助须知:如何正确求助?哪些是违规求助? 4503848
关于积分的说明 14016757
捐赠科研通 4412672
什么是DOI,文献DOI怎么找? 2423885
邀请新用户注册赠送积分活动 1416773
关于科研通互助平台的介绍 1394345