85 Integrating Mechanistic Models with AI for Precision Feeding of Sows

营养物 动物科学 垃圾箱 断奶 牧群 生产(经济) 数学 计算机科学 统计 农业科学 生物 生态学 宏观经济学 经济
作者
Charlotte Gaillard,Raphaël Gauthier,Jean-Yves Dourmad
出处
期刊:Journal of Animal Science [Oxford University Press]
卷期号:99 (Supplement_3): 42-42
标识
DOI:10.1093/jas/skab235.073
摘要

Abstract Conventional feeding for sows is usually based on the average herd’s nutrient requirements. Thus, sows can be under- or over- fed leading to extra feed costs and environmental losses. New technologies, as sensors and AI, bring opportunities to measure and integrate individual variability into nutrient requirements estimations. The objective is therefore to go towards precision feeding (PF) combining on-farm data as input for a dynamic nutritional model with smart feeders to provide individual and daily-adjusted rations. As a first step, a mechanistic model (InraPorc) was upgraded and applied to databases to calculate daily nutrient requirements at the individual scale for sows. For lactating sows, it highlighted that milk production and appetite influenced the amount and composition of the optimal ration to be fed to each sow. For gestating sows, it showed that parity, gestation stage, and activity level influenced nutrient requirements. The second step was to develop algorithms to predict the parameters of interest defined in the first step and not measured daily on-farm. For lactating sows, feed intake and litter weight at weaning (as proxy for milk production) were accurately predicted using supervised methods: respectively, clustering k-shape and a linear regression. For gestating sows, an algorithm is being developed to identify individual activities via video recordings. The third step is to test on farm the decision support systems (DSS) composed of the models and algorithms. An interface allows the link between the DSS and the feeders, and another allows the farmers to enter observational data. During on-farm trials, nitrogen and phosphorus excretions as well as feed costs were reduced for sows fed with PF compared to sows fed a conventional diet. To conclude, AI allows mechanistic models and algorithms to be integrated on farm for sows for an on real-time individual adjustment of the nutrient supply.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的粉丝团团长应助ASA采纳,获得30
1秒前
Choi完成签到,获得积分0
1秒前
无辜如容发布了新的文献求助10
1秒前
123完成签到,获得积分10
2秒前
3秒前
单耳兔完成签到 ,获得积分10
3秒前
潇湘雪月发布了新的文献求助10
3秒前
故意的靳完成签到,获得积分10
5秒前
mzhmhy完成签到,获得积分10
5秒前
bkagyin应助wish采纳,获得10
9秒前
Afaq发布了新的文献求助10
9秒前
果粒多发布了新的文献求助10
10秒前
10秒前
无辜如容完成签到,获得积分10
11秒前
11秒前
14秒前
15秒前
ASA发布了新的文献求助30
15秒前
16秒前
情怀应助tingting9采纳,获得10
17秒前
FXQ123_范发布了新的文献求助10
17秒前
sun完成签到,获得积分20
17秒前
19秒前
彭于晏应助wldsd采纳,获得30
19秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
20秒前
高一淼发布了新的文献求助10
21秒前
明道若昧完成签到,获得积分10
21秒前
上官若男应助mk采纳,获得10
22秒前
wish完成签到,获得积分10
24秒前
wish发布了新的文献求助10
26秒前
稍等一下完成签到 ,获得积分10
27秒前
momo发布了新的文献求助10
27秒前
29秒前
29秒前
liang白开完成签到,获得积分10
31秒前
mk发布了新的文献求助10
33秒前
丘比特应助嗯嗯采纳,获得10
33秒前
乐乐应助abin采纳,获得10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989263
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253814
捐赠科研通 3270066
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882084
科研通“疑难数据库(出版商)”最低求助积分说明 809136