已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

85 Integrating Mechanistic Models with AI for Precision Feeding of Sows

营养物 动物科学 垃圾箱 断奶 牧群 生产(经济) 数学 计算机科学 统计 农业科学 生物 生态学 宏观经济学 经济
作者
Charlotte Gaillard,Raphaël Gauthier,Jean-Yves Dourmad
出处
期刊:Journal of Animal Science [Oxford University Press]
卷期号:99 (Supplement_3): 42-42
标识
DOI:10.1093/jas/skab235.073
摘要

Abstract Conventional feeding for sows is usually based on the average herd’s nutrient requirements. Thus, sows can be under- or over- fed leading to extra feed costs and environmental losses. New technologies, as sensors and AI, bring opportunities to measure and integrate individual variability into nutrient requirements estimations. The objective is therefore to go towards precision feeding (PF) combining on-farm data as input for a dynamic nutritional model with smart feeders to provide individual and daily-adjusted rations. As a first step, a mechanistic model (InraPorc) was upgraded and applied to databases to calculate daily nutrient requirements at the individual scale for sows. For lactating sows, it highlighted that milk production and appetite influenced the amount and composition of the optimal ration to be fed to each sow. For gestating sows, it showed that parity, gestation stage, and activity level influenced nutrient requirements. The second step was to develop algorithms to predict the parameters of interest defined in the first step and not measured daily on-farm. For lactating sows, feed intake and litter weight at weaning (as proxy for milk production) were accurately predicted using supervised methods: respectively, clustering k-shape and a linear regression. For gestating sows, an algorithm is being developed to identify individual activities via video recordings. The third step is to test on farm the decision support systems (DSS) composed of the models and algorithms. An interface allows the link between the DSS and the feeders, and another allows the farmers to enter observational data. During on-farm trials, nitrogen and phosphorus excretions as well as feed costs were reduced for sows fed with PF compared to sows fed a conventional diet. To conclude, AI allows mechanistic models and algorithms to be integrated on farm for sows for an on real-time individual adjustment of the nutrient supply.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
糊涂完成签到 ,获得积分10
3秒前
4秒前
IV完成签到,获得积分10
4秒前
duang发布了新的文献求助10
5秒前
5秒前
受伤白猫发布了新的文献求助10
5秒前
隐形曼青应助清风采纳,获得10
6秒前
浮游应助AIR采纳,获得10
6秒前
6秒前
超人强发布了新的文献求助10
6秒前
糊涂关注了科研通微信公众号
7秒前
7秒前
李李发布了新的文献求助10
7秒前
华仔应助朝与暮采纳,获得10
9秒前
三三椋椋发布了新的文献求助10
9秒前
酷酷幻梦发布了新的文献求助10
10秒前
totoro发布了新的文献求助10
10秒前
10秒前
白板完成签到,获得积分10
11秒前
酷bile完成签到,获得积分10
11秒前
Lina完成签到,获得积分10
12秒前
上官若男应助chloe采纳,获得10
12秒前
cyw发布了新的文献求助10
12秒前
木火完成签到,获得积分10
12秒前
13秒前
羊羊发布了新的文献求助10
13秒前
可可完成签到 ,获得积分10
14秒前
14秒前
pyc完成签到,获得积分10
15秒前
15秒前
传奇3应助xiong采纳,获得10
15秒前
香蕉觅云应助duang采纳,获得10
16秒前
英姑应助yolo采纳,获得10
16秒前
燕子发布了新的文献求助10
16秒前
17秒前
SciGPT应助光亮秋白采纳,获得10
18秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462799
求助须知:如何正确求助?哪些是违规求助? 4567554
关于积分的说明 14310837
捐赠科研通 4493410
什么是DOI,文献DOI怎么找? 2461607
邀请新用户注册赠送积分活动 1450711
关于科研通互助平台的介绍 1425919