Toward Practical Solid-State Lithium–Sulfur Batteries: Challenges and Perspectives

锂(药物) 电池(电) 电解质 快离子导体 阴极 阳极 材料科学 有机自由基电池 锂离子电池的纳米结构 纳米技术 锂硫电池 化学工程 化学 电极 功率(物理) 工程类 物理化学 内分泌学 物理 医学 量子力学
作者
Saneyuki Ohno,Wolfgang G. Zeier
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:2 (10): 869-880 被引量:73
标识
DOI:10.1021/accountsmr.1c00116
摘要

ConspectusThe energy density of the ubiquitous lithium-ion batteries is rapidly approaching its theoretical limit. To go beyond, a promising strategy is the replacement of conventional intercalation-type materials with conversion-type materials possessing substantially higher capacities. Among the conversion-type cathode materials, sulfur constitutes a cost-effective and earth-abundant element with a high theoretical capacity that has a potential to be game-changing, especially within an emerging solid-state battery configuration. Employment of nonflammable solid electrolytes that improves battery safety and boosts the energy density, as lithium metal anodes are also viable. The long-standing inherent problem of conventional lithium–sulfur batteries, arising from the reaction intermediates dissolved in liquid electrolytes, can be eliminated with inorganic solid ion conductors. In particular, the highly conducting and easily processable lithium-thiophosphates have successfully enabled the lab-scale solid-state lithium–sulfur cells to achieve close-to-theoretical capacities. For applications requiring safe, energy-dense, lightweight batteries, solid-state lithium–sulfur batteries are an ideal choice that could surpass conventional lithium-ion batteries.Nevertheless, there are challenges specific to practical solid-state lithium–sulfur batteries, beyond the typical challenges inherent to solid-state batteries in general. While the conversion reaction of sulfur realizes a large specific capacity, the associated significant total volume changes of the active material results in contact losses among the cathode components and, consequently, decreases reversible capacity. Additionally, the ionically and electronically insulating active material requires composite formation with solid electrolytes and electron-conductive additives to secure sufficient ion and electron supply at a triple-phase boundary. However, the compositing process itself makes the carrier transport pathways very tortuous and requires the balancing of carrier transport and optimization of the attainable energy density. Lastly, the requirement of a high interfacial area to establish sufficient triple-phase boundaries promotes the degradation of the solid electrolytes, and the formation of less-conductive interphases further deteriorates the transport in the composites.This Account focuses on the challenges associated with developing practical solid-state lithium–sulfur batteries and provides an overview over recently developed concepts to tackle these critical challenges: (1) Introduction of the conversion efficiency to enable quantitative assessments of the impact of chemo-mechanical failure. (2) For long-term cycling, the electrolyte degradation at the interface and the electrochemical activity of the formed interphases come into play. Practical stability tests with increased interfacial areas and subsequently altered reversal potentials can quantify the magnitude of the electrolyte degradation and confirm influences of reversible redox activity of the interphases. (3) Monitoring the effective conductivity in the composites clarifies correlations between transport and cyclability, further highlighting the need of quantitative measurements to address the composite carrier transport. (4) Impedance spectroscopy combined with transmission-line model analysis as a function of applied potentials can visualize the stability window of good effective ion transport to utilize both the capacity contributions from redox-active interphases and the high ionic conductivity. In the end, a roadmap toward the practical solid-state lithium–sulfur batteries will be presented.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助朱小小采纳,获得10
2秒前
3秒前
4秒前
4秒前
cocolu应助朴素小霜采纳,获得20
6秒前
科研白小白应助hh采纳,获得30
7秒前
乐乐乐乐乐乐应助hh采纳,获得10
7秒前
10秒前
10秒前
隐形曼青应助Zhangyw采纳,获得10
10秒前
Elvira发布了新的文献求助10
10秒前
李爱国应助互为安良采纳,获得10
11秒前
小弈发布了新的文献求助10
11秒前
英姑应助727042677采纳,获得10
12秒前
111完成签到,获得积分10
13秒前
一往之前发布了新的文献求助10
14秒前
搞怪哑铃发布了新的文献求助10
15秒前
16秒前
18秒前
nini发布了新的文献求助10
18秒前
梓泽丘墟应助一往之前采纳,获得10
19秒前
琪琪琪发布了新的文献求助50
24秒前
pwj发布了新的文献求助10
25秒前
uniondavid完成签到,获得积分10
26秒前
Candice应助梦罪者采纳,获得10
26秒前
科研通AI2S应助哭泣代容采纳,获得10
27秒前
28秒前
浅尝离白发布了新的文献求助30
29秒前
31秒前
今后应助shimenwanzhao采纳,获得10
31秒前
鄂海菡完成签到,获得积分10
31秒前
高源发布了新的文献求助10
35秒前
邦邦发布了新的文献求助10
36秒前
37秒前
在水一方应助亦玉采纳,获得10
39秒前
氿囶发布了新的文献求助10
40秒前
41秒前
大个应助科研狗采纳,获得10
41秒前
熊猫小肿完成签到,获得积分10
42秒前
43秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343110
求助须知:如何正确求助?哪些是违规求助? 2970174
关于积分的说明 8642934
捐赠科研通 2650115
什么是DOI,文献DOI怎么找? 1451132
科研通“疑难数据库(出版商)”最低求助积分说明 672099
邀请新用户注册赠送积分活动 661407