A Systematic Framework for State of Charge, State of Health and State of Power Co-Estimation of Lithium-Ion Battery in Electric Vehicles

健康状况 荷电状态 电池(电) 估计员 电压 锂离子电池 工程类 功率(物理) 计算机科学 控制理论(社会学) 汽车工程 电气工程 数学 统计 人工智能 物理 控制(管理) 量子力学
作者
Tao Zhang,Ningyuan Guo,Xiaoxia Sun,Jie Fan,Naifeng Yang,Junjie Song,Yuan Zou
出处
期刊:Sustainability [MDPI AG]
卷期号:13 (9): 5166-5166 被引量:36
标识
DOI:10.3390/su13095166
摘要

Due to its advantages of high voltage level, high specific energy, low self-discharging rate and relatively longer cycling life, the lithium-ion battery has been widely used in electric vehicles. To ensure safety and reduce degradation during the lithium-ion battery’s service life, precise estimation of its states like state of charge (SOC), capacity and peak power is indispensable. This paper proposes a systematic co-estimation framework for the lithium-ion battery in electric vehicle applications. First, a linearized equivalent circuit-based battery model, together with an affine projection algorithm is used to estimate the model parameters. Then the state of health (SOH) estimator is triggered weekly or semi-monthly offline to update capacity based on the three-dimensional response surface open circuit voltage model and particle swarm optimization algorithm for accurate online SOC and state of power (SOP) estimation. At last, the Unscented Kalman Filter utilizes the estimated model parameters and updated capacity to estimate SOC online and the SOP estimator provides the power limitations considering SOC, current and voltage constraints, taking advantage of the information from both SOH and SOC estimators. Experiments show that the relative error of the SOH estimator is under 1% in all aging states whatever the loading profile is. The mean absolute SOC estimation error is under 1.6% even when the battery undergoes 744 aging cycles. The SOP estimator is validated by means of the calibrated battery model based on the HPPC test and its performance is ideal.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FYJ发布了新的文献求助10
1秒前
Elly发布了新的文献求助10
2秒前
烟花应助小米儿采纳,获得10
3秒前
6秒前
兴奋的天蓝完成签到,获得积分10
6秒前
JamesPei应助oaim采纳,获得10
7秒前
大模型应助111采纳,获得10
8秒前
海阔天空独立思考完成签到,获得积分10
9秒前
10秒前
霸气的猎豹完成签到,获得积分10
10秒前
调研昵称发布了新的文献求助30
10秒前
科研通AI2S应助谈志龙采纳,获得10
10秒前
pattzz完成签到,获得积分20
11秒前
11秒前
MXJ完成签到,获得积分10
11秒前
12秒前
星辰大海应助苗子采纳,获得10
12秒前
shinysparrow应助hhh采纳,获得50
13秒前
猫猫小队长完成签到 ,获得积分10
13秒前
14秒前
ding应助Giggle采纳,获得10
15秒前
15秒前
15秒前
SUN发布了新的文献求助10
16秒前
快乐小行星发布了新的文献求助100
19秒前
aaaaaab发布了新的文献求助10
20秒前
oaim完成签到,获得积分10
21秒前
orixero应助丙烯酸树脂采纳,获得10
22秒前
23秒前
23秒前
asdaqqqq发布了新的文献求助10
24秒前
风中如风完成签到,获得积分10
24秒前
爆米花应助ha哈采纳,获得10
25秒前
25秒前
SciGPT应助东风恶采纳,获得10
26秒前
yy应助科研通管家采纳,获得10
29秒前
Lucas应助科研通管家采纳,获得10
29秒前
天天快乐应助科研通管家采纳,获得10
29秒前
子车茗应助科研通管家采纳,获得10
29秒前
MinamiKotori应助科研通管家采纳,获得30
29秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233988
求助须知:如何正确求助?哪些是违规求助? 2880400
关于积分的说明 8215350
捐赠科研通 2547939
什么是DOI,文献DOI怎么找? 1377363
科研通“疑难数据库(出版商)”最低求助积分说明 647856
邀请新用户注册赠送积分活动 623248