An intelligent and automated 3D surface defect detection system for quantitative 3D estimation and feature classification of material surface defects

人工智能 计算机视觉 计算机科学 点云 特征(语言学) 分割 三维重建 立体摄像机 摄影测量学 由运动产生的结构 卷积神经网络 运动估计 哲学 语言学
作者
Yulong Zong,Jin Liang,Huan Wang,Maodong Ren,Mingkai Zhang,Wenpan Li,Lu Wang,Meitu Ye
出处
期刊:Optics and Lasers in Engineering [Elsevier]
卷期号:144: 106633-106633 被引量:35
标识
DOI:10.1016/j.optlaseng.2021.106633
摘要

To evaluate defects on the surface of the materials at the 3D level accurately and quantitatively, a 3D surface defect detection system based on stereo vision is presented, which can extract the precise 3D defect features of the detected object. The proposed detection system consists of two image capture modules and a turntable to capture the complete 3D information and color texture information from the object surface. More precisely, each image capture module is a binocular stereo vision system containing two monochrome cameras, a color camera, and a speckle projector which is used to reconstruct the 3D point clouds of the object surface based on stereo digital image correlation (stereo-DIC). Furthermore, a point-image mapping relationship between the reconstructed 3D object points and the color images is established. Eventually, the 3D characteristic parameters of defects are calculated by the corresponding 3D point cloud of the defect area obtained by segmenting the defect area using the image segmentation and point cloud segmentation algorithms according to this point-image mapping relationship. A convolutional neural network named DenseNets is employed to identify defect types intelligently. A high-precision multi-camera calibration method based on close-range photogrammetry is applied to ensure system detection accuracy in the proposed system. The experimental results demonstrate that the system has higher accuracy and better performance in system calibration, 3D reconstruction, and defect feature calculation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
穆茹妖发布了新的文献求助10
刚刚
刚刚
1秒前
dddd完成签到,获得积分10
2秒前
zhui发布了新的文献求助10
2秒前
八十发布了新的文献求助10
3秒前
鹿芩完成签到,获得积分10
4秒前
luxxxiu完成签到,获得积分10
6秒前
顺顺关注了科研通微信公众号
6秒前
眼睛大老姆完成签到,获得积分10
6秒前
18275412695完成签到,获得积分10
6秒前
7秒前
科目三应助xjtu采纳,获得10
7秒前
8秒前
8秒前
在水一方应助热情芝麻采纳,获得10
8秒前
害羞的玉米完成签到,获得积分10
8秒前
10秒前
10秒前
李来仪发布了新的文献求助10
11秒前
英姑应助yangyong采纳,获得10
11秒前
11秒前
NexusExplorer应助通通通采纳,获得10
11秒前
liying完成签到,获得积分10
12秒前
12秒前
13秒前
王石雨晨完成签到 ,获得积分10
13秒前
13秒前
18275412695发布了新的文献求助10
13秒前
研0完成签到,获得积分10
14秒前
丁昆发布了新的文献求助10
15秒前
锦墨人生发布了新的文献求助30
16秒前
科研通AI5应助猪猪hero采纳,获得10
16秒前
NexusExplorer应助无情的白桃采纳,获得10
17秒前
sommer12345完成签到 ,获得积分10
17秒前
润润轩轩发布了新的文献求助10
18秒前
丁昆完成签到,获得积分10
20秒前
ding应助热情的阿猫桑采纳,获得10
22秒前
我是老大应助麦麦采纳,获得10
22秒前
Lyven发布了新的文献求助30
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794