An intelligent and automated 3D surface defect detection system for quantitative 3D estimation and feature classification of material surface defects

人工智能 计算机视觉 计算机科学 点云 特征(语言学) 分割 三维重建 立体摄像机 摄影测量学 由运动产生的结构 卷积神经网络 运动估计 哲学 语言学
作者
Yulong Zong,Jin Liang,Huan Wang,Maodong Ren,Mingkai Zhang,Wenpan Li,Lu Wang,Meitu Ye
出处
期刊:Optics and Lasers in Engineering [Elsevier BV]
卷期号:144: 106633-106633 被引量:35
标识
DOI:10.1016/j.optlaseng.2021.106633
摘要

To evaluate defects on the surface of the materials at the 3D level accurately and quantitatively, a 3D surface defect detection system based on stereo vision is presented, which can extract the precise 3D defect features of the detected object. The proposed detection system consists of two image capture modules and a turntable to capture the complete 3D information and color texture information from the object surface. More precisely, each image capture module is a binocular stereo vision system containing two monochrome cameras, a color camera, and a speckle projector which is used to reconstruct the 3D point clouds of the object surface based on stereo digital image correlation (stereo-DIC). Furthermore, a point-image mapping relationship between the reconstructed 3D object points and the color images is established. Eventually, the 3D characteristic parameters of defects are calculated by the corresponding 3D point cloud of the defect area obtained by segmenting the defect area using the image segmentation and point cloud segmentation algorithms according to this point-image mapping relationship. A convolutional neural network named DenseNets is employed to identify defect types intelligently. A high-precision multi-camera calibration method based on close-range photogrammetry is applied to ensure system detection accuracy in the proposed system. The experimental results demonstrate that the system has higher accuracy and better performance in system calibration, 3D reconstruction, and defect feature calculation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助才哥采纳,获得10
2秒前
水墨橙子发布了新的文献求助200
3秒前
Owen应助默默碧空采纳,获得10
3秒前
Hello应助鲜艳的皮皮虾采纳,获得10
4秒前
5秒前
5秒前
5秒前
贪玩的天荷完成签到 ,获得积分10
5秒前
三金完成签到,获得积分10
7秒前
8秒前
ggy发布了新的文献求助10
8秒前
酷酷的冰真应助Keira采纳,获得20
8秒前
哈哈哈哈哈完成签到,获得积分10
10秒前
嘻哈哈完成签到,获得积分10
12秒前
阔达乘云完成签到 ,获得积分10
15秒前
16秒前
17秒前
19秒前
20秒前
默默碧空发布了新的文献求助10
21秒前
22秒前
搜集达人应助江江采纳,获得10
23秒前
23秒前
Delia发布了新的文献求助10
24秒前
zhu发布了新的文献求助10
25秒前
huangbing123发布了新的文献求助10
25秒前
26秒前
坤坤大白发布了新的文献求助10
27秒前
27秒前
陈锦辞完成签到,获得积分10
28秒前
呆萌凤发布了新的文献求助10
28秒前
29秒前
思源应助oasis采纳,获得10
31秒前
思源应助科研通管家采纳,获得10
31秒前
今后应助科研通管家采纳,获得10
31秒前
31秒前
英俊的铭应助科研通管家采纳,获得10
32秒前
逸之狐应助科研通管家采纳,获得20
32秒前
彭于晏应助科研通管家采纳,获得10
32秒前
zhuang应助科研通管家采纳,获得10
32秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962328
求助须知:如何正确求助?哪些是违规求助? 3508472
关于积分的说明 11141017
捐赠科研通 3241123
什么是DOI,文献DOI怎么找? 1791353
邀请新用户注册赠送积分活动 872827
科研通“疑难数据库(出版商)”最低求助积分说明 803382