Double-Stranded RNA Adenosine Deaminases ADAR1 and ADAR2 Have Overlapping Specificities

阿达尔 RNA编辑 核糖核酸 腺苷脱氨酶 腺苷 生物 化学 生物化学 基因
作者
Katrina A. Lehmann,Brenda Bass
出处
期刊:Biochemistry [American Chemical Society]
卷期号:39 (42): 12875-12884 被引量:273
标识
DOI:10.1021/bi001383g
摘要

Adenosine deaminases that act on RNA (ADARs) deaminate adenosines to produce inosines within RNAs that are largely double-stranded (ds). Like most dsRNA binding proteins, the enzymes will bind to any dsRNA without apparent sequence specificity. However, once bound, ADARs deaminate certain adenosines more efficiently than others. Most of what is known about the intrinsic deamination specificity of ADARs derives from analyses of Xenopus ADAR1. In addition to ADAR1, mammalian cells have a second ADAR, named ADAR2; the deamination specificity of this enzyme has not been rigorously studied. Here we directly compare the specificity of human ADAR1 and ADAR2. We find that, like ADAR1, ADAR2 has a 5' neighbor preference (A ≈ U > C = G), but, unlike ADAR1, also has a 3' neighbor preference (U = G > C = A). Simultaneous analysis of both neighbor preferences reveals that ADAR2 prefers certain trinucleotide sequences (UAU, AAG, UAG, AAU). In addition to characterizing ADAR2 preferences, we analyzed the fraction of adenosines deaminated in a given RNA at complete reaction, or the enzyme's selectivity. We find that ADAR1 and ADAR2 deaminate a given RNA with the same selectivity, and this appears to be dictated by features of the RNA substrate. Finally, we observed that Xenopus and human ADAR1 deaminate the same adenosines on all RNAs tested, emphasizing the similarity of ADAR1 in these two species. Our data add substantially to the understanding of ADAR2 specificity, and aid in efforts to predict which ADAR deaminates a given editing site adenosine in vivo.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
摆烂小鱼鱼完成签到 ,获得积分10
刚刚
Lucas应助韩麒嘉采纳,获得10
刚刚
刚刚
刚刚
1秒前
Niuniu完成签到,获得积分10
1秒前
裴裴驳回了珏晴应助
1秒前
2秒前
2秒前
2秒前
2秒前
Aprilapple完成签到,获得积分10
2秒前
3秒前
song发布了新的文献求助10
3秒前
兴奋的发卡完成签到 ,获得积分10
4秒前
自觉翠安应助qiuxiali123采纳,获得10
4秒前
6秒前
hezhuyou完成签到,获得积分20
6秒前
飞乐扣完成签到 ,获得积分10
6秒前
buno应助屈昭阳采纳,获得10
6秒前
优美的觅珍完成签到,获得积分20
6秒前
冯佳祥发布了新的文献求助10
6秒前
aa发布了新的文献求助10
6秒前
852应助一只肥牛采纳,获得10
7秒前
lewis17发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
伯赏夜南发布了新的文献求助10
7秒前
orixero应助Niuniu采纳,获得10
7秒前
雪雪子完成签到,获得积分10
8秒前
8秒前
8秒前
胖狗完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
10秒前
Owen应助edtaa采纳,获得10
10秒前
万能图书馆应助orange采纳,获得10
11秒前
Yu完成签到,获得积分10
11秒前
221发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836