Modeling of temperature profile, thermal runaway and hot spot in thin film solar cells

材料科学 热传导 热失控 比奥数 热点(计算机编程) 热导率 传热 对流 热的 薄膜 碲化镉光电 光电子学 光学 机械 复合材料 热力学 纳米技术 操作系统 物理 功率(物理) 计算机科学 电池(电)
作者
Mauricio D. Perez,Nima E. Gorji
出处
期刊:Materials Science in Semiconductor Processing [Elsevier]
卷期号:41: 529-534 被引量:18
标识
DOI:10.1016/j.mssp.2015.09.029
摘要

Hot spot and thermal runaway are serious phenomena leading to the degradation of CdTe thin film solar cells. Here, we show that these issues are well related to temperature variation in the device structures mostly because of current flowing across transparent conducting oxide (TCO) layer or back contact of a CdTe device structure: glass/TCO/CdS/CdTe/graphene. Graphene nanolayer was chosen as the back contact because of its high thermal conductivity. We present a modeling of the temperature profile in CdTe thin film devices considering both uniform and nonuniform temperature distribution and current flowing across TCO layer. Temperature profile for hot spots at the edges of devices are modeled and compared to literature reports of both modelled and measured data. The model is based on the heat transfer equation (which uses thermal resistances) and in particular accounts for convection and conduction resistances by means of their ratio, the Biot number – a factor that could be optimized in the design of photovoltaic devices. Profiles were modelled taking into account both uniform and non-uniform temperature profiles for the glass, and currents flowing though the TCO. It is shown that the current flowing across the TCO layer can contribute to thermal runaway and its spreading to neighbouring areas. Overall the modelling data suggests that thin film solar devices could be designed to minimise hot spot runaway issues by taking into account the thickness and temperature dependence of the layers thermal conductivity, convection and conduction resistances. This can be extended to other solar cell structures or large scale modules.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
inshialla完成签到 ,获得积分10
1秒前
youjiang发布了新的文献求助10
1秒前
heidi发布了新的文献求助10
1秒前
lxd完成签到,获得积分10
2秒前
2秒前
标致的蛋挞完成签到,获得积分10
2秒前
YanChengHan发布了新的文献求助10
2秒前
大模型应助wyhhh采纳,获得10
3秒前
科研通AI5应助苏苏采纳,获得10
3秒前
科研通AI5应助苏苏采纳,获得10
3秒前
4秒前
zmk发布了新的文献求助10
4秒前
逍遥呱呱发布了新的文献求助10
6秒前
所所应助D先生采纳,获得20
8秒前
8秒前
frank完成签到,获得积分10
9秒前
张学友发布了新的文献求助30
12秒前
Rex发布了新的文献求助10
12秒前
13秒前
淡淡冬瓜完成签到,获得积分10
13秒前
orixero应助heidi采纳,获得30
14秒前
16秒前
危机的酒窝完成签到,获得积分10
16秒前
17秒前
hhl完成签到,获得积分10
18秒前
ck完成签到,获得积分10
18秒前
2393843435完成签到,获得积分20
19秒前
20秒前
余姚发布了新的文献求助10
20秒前
zhouyane完成签到,获得积分10
21秒前
rosalieshi完成签到,获得积分0
22秒前
星辰大海完成签到 ,获得积分10
23秒前
WQY发布了新的文献求助10
23秒前
25秒前
buno应助求助采纳,获得10
25秒前
尘扬完成签到,获得积分10
25秒前
26秒前
27秒前
30秒前
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528035
求助须知:如何正确求助?哪些是违规求助? 3108306
关于积分的说明 9288252
捐赠科研通 2805909
什么是DOI,文献DOI怎么找? 1540220
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709851