亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Rapid object detection using a boosted cascade of simple features

目标检测 计算机科学 Viola–Jones对象检测框架 人工智能 阿达布思 人脸检测 对象类检测 计算机视觉 级联 光学(聚焦) 上下文图像分类 模式识别(心理学) 集合(抽象数据类型) 代表(政治) 图像(数学) 视觉对象识别的认知神经科学 探测器 对象(语法) 面部识别系统 支持向量机 电信 化学 物理 光学 色谱法 政治 法学 政治学 程序设计语言
作者
Paul Viola,Michael Jones
出处
期刊:Computer Vision and Pattern Recognition 卷期号:1: I-511 被引量:17975
标识
DOI:10.1109/cvpr.2001.990517
摘要

This paper describes a machine learning approach for visual object detection which is capable of processing images extremely rapidly and achieving high detection rates. This work is distinguished by three key contributions. The first is the introduction of a new image representation called the "integral image" which allows the features used by our detector to be computed very quickly. The second is a learning algorithm, based on AdaBoost, which selects a small number of critical visual features from a larger set and yields extremely efficient classifiers. The third contribution is a method for combining increasingly more complex classifiers in a "cascade" which allows background regions of the image to be quickly discarded while spending more computation on promising object-like regions. The cascade can be viewed as an object specific focus-of-attention mechanism which unlike previous approaches provides statistical guarantees that discarded regions are unlikely to contain the object of interest. In the domain of face detection the system yields detection rates comparable to the best previous systems. Used in real-time applications, the detector runs at 15 frames per second without resorting to image differencing or skin color detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KINGAZX完成签到 ,获得积分10
7秒前
诸葛平卉完成签到 ,获得积分10
15秒前
蓝朱发布了新的文献求助10
27秒前
33秒前
yf完成签到,获得积分10
34秒前
39秒前
45秒前
蓝朱完成签到,获得积分10
47秒前
56秒前
56秒前
56秒前
Able完成签到,获得积分10
1分钟前
传奇3应助噢斯帕斯基采纳,获得10
1分钟前
zbr完成签到 ,获得积分10
1分钟前
pia叽完成签到 ,获得积分10
1分钟前
balko完成签到,获得积分10
2分钟前
2分钟前
ersheng发布了新的文献求助10
2分钟前
Criminology34应助坦率广山采纳,获得10
2分钟前
所所应助啦啦啦采纳,获得10
2分钟前
万能图书馆应助啦啦啦采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
ling发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
iNk应助mlx采纳,获得30
3分钟前
噢斯帕斯基关注了科研通微信公众号
3分钟前
3分钟前
充电宝应助ling采纳,获得10
3分钟前
啦啦啦发布了新的文献求助10
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
NattyPoe发布了新的文献求助10
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639713
求助须知:如何正确求助?哪些是违规求助? 4749883
关于积分的说明 15007176
捐赠科研通 4797859
什么是DOI,文献DOI怎么找? 2563980
邀请新用户注册赠送积分活动 1522864
关于科研通互助平台的介绍 1482529