亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Basic concepts of pharmacokinetic/pharmacodynamic (PK/PD) modelling.

药代动力学 药效学 药理学 药品 化学 医学
作者
Bernd Meibohm,H Derendorf
出处
期刊:PubMed 卷期号:35 (10): 401-13 被引量:255
链接
标识
摘要

Pharmacokinetic (PK) and pharmacodynamic (PD) information from the scientific basis of modern pharmacotherapy. Pharmacokinetics describes the drug concentration-time courses in body fluids resulting from administration of a certain drug dose, pharmacodynamics the observed effect resulting from a certain drug concentration. The rationale for PK/PD-modelling is to link pharmacokinetics and pharmacodynamics in order to establish and evaluate dose-concentration-response relationships and subsequently describe and predict the effect-time courses resulting from a drug dose. Under pharmacokinetic steady-state conditions, concentration-effect relationships can be described by several relatively simple pharmacodynamic models, which comprise the fixed effect model, the linear model, the long-linear model, the Emax-model and the sigmoid Emax-model. Under non steady-state conditions, more complex integrated PK/PD-models are necessary to link and account for a possible temporal dissociation between the plasma concentration and the observed effect. Four basic attributes may be used to characterize PK/PD-models: First, the link between measured concentration and the pharmacologic response mechanism that mediates the observed effect, direct vs. indirect link; second, the response mechanism that mediates the observed effect, direct vs. indirect response; third, the information used to establish the link between measured concentration and observed effect, hard vs. soft link; and fourth, the time dependency of the involved pharmacodynamic parameters, time-variant vs. time-invariant. In general, PK/PD-modelling based on the underlying physiological process should be preferred whenever possible. The expanded use of PK/PD-modelling is assumed to be highly beneficial for drug development as well as applied pharmacotherapy and will most likely improve the current state of applied therapeutics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
ceeray23应助科研通管家采纳,获得10
5秒前
Yan应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
Yan应助科研通管家采纳,获得10
5秒前
霸气的问玉完成签到,获得积分10
15秒前
斯文败类应助感性的靖仇采纳,获得10
24秒前
Never完成签到 ,获得积分10
27秒前
33秒前
38秒前
Picopy完成签到,获得积分10
1分钟前
子平完成签到 ,获得积分0
1分钟前
2分钟前
苏黎沫发布了新的文献求助10
2分钟前
无情的听莲完成签到,获得积分10
2分钟前
赘婿应助苏黎沫采纳,获得10
2分钟前
3分钟前
乐乐应助远行客HB采纳,获得10
3分钟前
喜悦的小土豆完成签到 ,获得积分10
3分钟前
3分钟前
lsl完成签到 ,获得积分10
3分钟前
3分钟前
可爱的函函应助往复采纳,获得10
4分钟前
5分钟前
mark完成签到,获得积分10
5分钟前
义气的猫咪完成签到,获得积分10
5分钟前
CodeCraft应助xuan采纳,获得10
5分钟前
5分钟前
xuan发布了新的文献求助10
5分钟前
ceeray23应助科研通管家采纳,获得10
6分钟前
ceeray23应助科研通管家采纳,获得10
6分钟前
科研通AI6应助xys采纳,获得10
6分钟前
pigff发布了新的社区帖子
6分钟前
6分钟前
7分钟前
发不出sci的完成签到,获得积分10
7分钟前
杨横发布了新的文献求助10
7分钟前
GPTea应助幺幺采纳,获得20
7分钟前
ceeray23应助科研通管家采纳,获得10
8分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5199123
求助须知:如何正确求助?哪些是违规求助? 4379842
关于积分的说明 13638572
捐赠科研通 4236170
什么是DOI,文献DOI怎么找? 2323884
邀请新用户注册赠送积分活动 1321840
关于科研通互助平台的介绍 1273123