堆
岩土工程
圆锥贯入试验
承载力
渗透试验
海底管道
负载测试
结构工程
工程类
基础(证据)
地质学
考古
路基
历史
作者
Amir Fateh,Abolfazl Eslami,Ahmad Fahimifar
标识
DOI:10.1080/1064119x.2015.1133741
摘要
Helical piles are structural deep foundation elements, which can be categorized as torque-driven piles without any limitations to implement in marine situations. Different methods are used to predict the axial capacity of helical piles, such as static analysis, but have some limitation for this type of piles on marine conditions. In situ testing methods as supplement of static analysis have been rarely used for helical piles. In geotechnical engineering practice, the most common in situ tests particularly applicable for coastal or offshore site investigation are cone penetration test (CPT) and piezocone penetration test (CPTu). The CPT is simple, repeatable, and prepares the continuous records of soil layers. In this paper, a data bank has been compiled by collecting the results of static pile load tests on thirty-seven helical piles in ten different sites including CPT or CPTu data. Axial capacities of thirty-seven helical piles in different sites were predicted by direct CPT methods and static analysis. Accuracy estimation of ten direct CPT methods to predict the axial capacity of helical piles was investigated in this study. Comparisons have been made among predicted values and measured capacity from the pile load tests. Results indicated that the recently developed methods such as NGI-05 (2005), ICP-05 (2005), and UWA-05 (2005) predicted axial capacity of helical piles more accurately than the other methods such as Meyerhof (1983), Schmertmann (1978), Dutch (1979), LCPC (1982), or Unicone (1997). However, more investigations are required to establish better correlation between CPT data and axial capacity of helical piles.
科研通智能强力驱动
Strongly Powered by AbleSci AI